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Topics to be covered

Support Vector Clustering (SVC)
Ben-Hur, Horn, Siegelmann and Vapnik, JMLR 2001

Quantum Clustering (QC)
Horn and Gottlieb, Phys. Rev. Lett. 2002

Singular Value Decomposition (SVD)
preprocessing for biological applications
Horn and Axel, Bioinformatics 2002

QUI

GUI for SVD and clustering, including QC




Cluster Analysis

The clustering problem:
partition a ﬁaTa-seT into a number of groups such that
points within each group are alike in some sense.
Approaches:
Hierarchical algorithms - cut the dendrogram at a certain level.
Partitional algorithms.
Parametric methods.
K-means.
Mixture models.
Nonparametric methods.
Graph theoretic methods.
Information theoretic.

Algorithms based on statistical physics.

— hods.



Support Vector Clustering

Given points x in data space, define images in
Hilbert space.

Require all images to be enclosed by a minimal
sphere in Hilbert space.

Reflection of this sphere in data space defines
cluster boundaries.

Two parameters: width of Gaussian kernel and
fraction of outliers




An enclosing sphere 1s defined by:
|@(x;) — al|> < R?
s ¢ - map into feature space

a: center of the sphere.

® Goal minimize B2 over all choices of a using the

Largragian:
L=R?— Y (B — ||o(x;) — al|*)8;
g
3; Lagrange multiplier

Derivatives with respect to i and a:




The KKT complementarity conditions:
(R* — ||2(x;) — al|*)B; = 0
*5; #0 = R*—|[|®(x;)—al* =0

Points with & # () are on the surface of the sphere

(support vectors).

e Wolfe dual form:
W=> ®(x;)8; — > BiB®(x;:) - B(x;)
] £J

with the constraints 3~ 3; =1

e The SV trick: represent the dot products by a kernel
function K {x;,%;)

Lagrangian now becomes:
W =Y K(x;,%;)8; — > BB K(xi,x;).
5 i,J

e No need to know the specific form of @




R = {R(x;) | x; is a support vector }

The enclosing contour: {}: | R[}:} = R}

The shape of contour governed by the kernel parameter:

K(x;,x;) = e~

® As g increases the contour becomes a tighter fit; for

certain values of g observe splitting.

e Need to identify the different components.

o Complexity: O(N2D)




Variation of g allows for clustering solutions on various scales
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R = {R(x;) | x; is a support vector }

The enclosing contour: {}: | R[}:} = R}

The shape of contour governed by the kernel parameter:

K(x;,x;) = e~

® As ¢ increases the contour becomes a tighter fit; for

certain values of g observe splitting.

e Need to identify the different components.

e Complexity: O(N2D)




Example that allows for SVclustering only in presence
of outliers. Procedure: limit B <C=1/pN, where
p=fraction of assumed outliers in the data.




Similarity to scale space approach for high values of g
and p. Probability distribution obtained from R(x).




Wave-function Representation of Hilbert Space
The vectors ®(x;) can be represented by wave-functions
B(x;) = ce I (1)
such that
B(x;) - B(x;) = & Jf e~ %)% o —glx—x ) g o—qlx—x;)? (2)
The center of the SV sphere a becomes
a=x B;b(x;) = 2> Byeatx—x3)”, (3)

This expression is the same as FPy,..



From Scale-space to Quantum Clustering

Parzen window approach:
estimate the probability density by kernel
functions (Gaussians) located at data
points.

(x_xi)z

P(x):cz f.(x)= CZ e 20

l

o= 1/4(29)




Quantum Clustering

View P=Y¥ as the solution of the Schrodinger
equation:

0_2
HY z(— = V2+V(x)j\l’ - EV¥

with the potential V(x) responsible for
attraction to cluster centers and the
Lagranglan causing the spread.

Find V(x): o 9 vyiy = (X )
V(x):E+ 2\p =E— 7ﬂzwz:()c—x)z o’

X

Horn and Gottlieb, Phys. Rev. Lett. 88 (2002) 018702



The Crabs Example (from Ripley's textbook)

4 classes, 50 samples each, d=5

PC2

PC3

A topographic map of the probability distribution for the crab data set
with 6=1/42 using principal components 2 and 3. There exists only one
maximum.




The Crabs Example
QC potential exhibits four minima identified with cluster centers

PC2

PC3

A topographic map of the potential for the crab data set with 6=1/~/2
using principal components 2 and 3 . The four minima are denoted by
crossed circles. The contours are set at values V=cE for ¢c=0.2,...,1.




The Crabs Example - Contd.
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A three dimensional plot of the potential for the crab data set with

5=1/+/3 using principal components 2 and 3




The Crabs Example - Contd.
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A three dimensional plot of the potential for the crab data set with

o=1/2

using principal components 2 and 3




Properties of Vand E

E is chosen so that min(V)=0.
E sets the scale of structure observed in V(x).

The single point case corresponds to the harmonic
potential

y = _(x-=x, E=4d/2

20
In general

O<E<d/2




Identifying Clusters

Local minima of the potential are identified with
cluster centers.

Data points are assigned to clusters according to:
-minimal distance from centers, or,

-sliding points down the slopes of the potential
with gradient descent until they reach the
centers.




The Iris Example

3 classes, each containing 50 samples, d=4

PC2
o
3

-2
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0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
PC1

A topographic map of the potential for the iris data set with 6=0.25
using principal components 1 and 2. The three minima are denoted by
crossed circles. The contours are set at values V=cE for c=0.2,....1.




The Iris Example - Gradient Descent Dynamics

original data iteration no.2
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Application in High Dimensions.

Evaluate the potential at data points only:
(xi_x_)z
1 —
V(5)=V, = E- St 3 (5 - v fe

2 20°Y, 5

Since minima are expected to lie close to data
points, it suffices to use this discrete approach.
Moreover, this formulation allows one to apply
QC to a situation when only distances (rather
than space coordinates) are known.
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V/E

Clusters of crab-3D after gradient descent
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The Iris Example - Using Raw Data in 4D.
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There are only 5 misclassifications. =0.21.
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mRNA Protein

Cells express different subset of the genes in
different tissues and under different conditions
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~  RNA fragment hybridizes with DNA on GeneChip
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Microarrays

Advantage
B High throughput
Disadvantages

B The measure of expression level is not
accurate

B Experiments produces high level of noise




Most common analysis: clustering

Input: N data points, X, i=1,2,...,N
in @ d dimensional space.

Output: classification of the data
points into “natural” groups
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Hierarchical Quantum Clustering (HQC)

O

O

Start with raw data matrix containing gene
expression profiles of the samples.

Apply SVD and truncate to r-space by selecting the
first r significant eigenvectors

Apply QC in r-dimensions starting at small scale o,
obtaining many clusters. Move data points to cluster
centers and reiterate the process at higher o. This
produces hierarchical clustering that can be
represented by a dendrogram.




Example 1- Clustering of human
cancer cells

The NCIG60 set 1s a gene expression profile of ~8000 genes in

60 human cancer cells.

NCI60 includes cell lines derived from cancers of colorectal,
renal, ovarian, breast, prostate, lung and central nervous system,
as well as leukemias and melanomas.

After application of selective filters the number of gene spots is

reduced to 1,376 gene subset.
(Scherf et al. — Nature Genetics 24, 2000)

We applied HQC with r=5 dimension.




Clustering of human cancer

Example 1

cells
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Example 1 - Projection onto the unit
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Representation of data of four classes of cancer cells on two dimensions of the
truncated space. The circles denote the locations of the data points before this

normalization was applied



Example 2 - Yeast cell cycle

Yeast cell cycle data were studied by several groups who have
applied SVD. (Speliman et al. Molecular Biology of the Cell, 9, Dec. 2000)
We use it to test clustering of genes, whose classification into
groups was investigated by Spellman et al.

The gene/sample matrix that we start from has dimensions of

798x72, using the same selection as made by (Shawir, R. and Sharan,
R. 2002 )

We truncate it to r=4 and obtain, once again, our best results
for 0=0.5, where four clusters follow from the QC algorithm.




Example 2 — Yeast cell cycle
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Example 2 — Yeast cell cycle

4 7
100 200 300 400 500 S00 700

Cluster assignments of genes for QC with s=0.46 , as compared to the
classification by Spellman into five classes, shown as alternating gray
and white areas .




Example 3 -— AML/ALL

This data set is taken from 72 leukemia patients with 2 types of
leukemia called ALL and AML.. (Golub,T. et al. 1999. Science, 286 )

The ALL set is further divided into T-lineage leukemia and B-
lineage leukemia and the AML set is divided into patients who
have undergone treatment (with an anthracycline-cytarabine
regimen) and those who have not.

The microarray data correspond to 72 samples tested on 7129
genes. Using SVD we truncate it down to r=>5, where we obtain
clustering results, conforming to the four classes that exist in
this data set.




Example 3 — AML/ALL
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Clustering solutions for the AML/ALL problem using . The samples are ordered
on the x-axis according to the classification into four groups indicated by
alternative gray and white areas




Example 4 — B-cell lymphoma

Measurements of gene expression were made using 128
microarrays and 96 samples of normal and malignant
lymphocytes.

The microarrays used were specialized ones ("Lymphochip®),
designed by selecting genes that are preferentially expressed in
lymphoid cells and genes with known or suspected roles in

processes important in immunology or cancet. (Alizadeh AA, et al.
Nature 403 , 2000)

We applied HQC with r=6 dimensions and obtained a Jaccard

score of (.85 when compared to given classification of samples.
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Example 4 — B-cell Iymphoma

performed in an =5 eigengene space.



Example 5 — Lung cancer

We applied QC in 3 dimensions in order to
separate between 28 healthy and
cancerous tissues — data was taken from an
experiment done by Jossi Hillel’s lab

The result was 1 misclassification when
using ~5000 out of 22,000 genes

Attempt to further separate the samples
into smokers and non-smokers has failed at

this point




Cluster Qualitys

S in a way called Jaccard score:

n,

== HEsigEea o T gy

- - -
—- — i

_,___zz'*-l—’The Number of pairs of elements that are in the same cluster

,-11‘1'"bOth S and T.

=

-

- The Number of pairs that are in the same cluster only in S
;o - The Number of pairs that are in the same cluster only in T.

Note that the Jaccard score is better when score is higher with best score at 1



Measuring Clustering Quality

FTic Jaccard score behavior as a runcton of sigma

Jaccard Score

The Jaccard measure for the AML/ALL problem as function of c.



back to The Iris Flower Example

1 Iris Flower
B 150 flowers
B 4 indexes 4 dim.
* 3 groups

5

150 samples
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QUI - Quantum clustering User
Interface

QUTIis a GUTI Matlab tool that enables an easy
and intuitive way to compare some clustering
methods.

QUT is a five-step wizard that envelops some
basic Matlab clustering methods and introduces
the Quantum clustering algorithm. QUI provides
a flexible and customizable interface for
clustering data with high dimensionality.

QUI allows both textual and graphical display
for the clustering results




How to Install?

QUI is a self-extracting package. In order to install and
run the QuUr tool, follow these three easy steps

Download the QUI.zip packaged to your local drive.

Add the QuUrI destination directory to your Matlab
path.

Within Matlab, type ‘qui’ at the command prompt.




Steps — 1

Input parameters
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Steps — 1

Selecting variables
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Steps — 2

Determining the matrix shape and vectors to
cluster
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Steps - 3
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Steps — 4
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Steps - 5
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Steps - 5
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Summary - SVC

SVC is a kernel method employing the principle of enclosing
images of data points in a minimal sphere in Hilbert space.
Working with a Gaussian kernel we obtain good clustering results

varying the width parameter q.

For a problem with overlapping distributions of data we make use
of the possibility of handling outliers in SVM methods. The
fraction p of outliers becomes another parameter of our
system.

SVC supplies cluster contours in data space.

For large p values it bears similarity to the state-scale (Parzen
window) approach.




Summary - QC

The QC algorithm constructs a potential function from
normalized second order moments of Parzen window
distribution.

It identifies potential minima with cluster centers.
It has one free parameter, the scale 6=1/7(2q).

QC can work with full spatial information in low dimensions
(e.g. few PCs) or with distance information in any
dimension.

Cluster assignment via gradient descent leads to very good
results.




Summary - biological applications

I

We have employed a new form of SVD processing to microarray
data along with QC as a clustering method.

Truncating SVD down to 4-5 dimensions, turns out fo be a
useful method for representing microarray data. Projection
onto the unit sphere allows for separation between different
classes.

QC, and its hierarchical version HQC, provide robust
clustering tools that work well in multi-dimensional spaces.

In all test cases we have obtained very good clustering results
for choices of o around 0.5.




