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Abstract. There exist numerous algorithms that cluster data-points from large-
scale genomic experiments such as sequencing, gene-expression and pro-
teomics. Such algorithms may employ distinct principles, and lead to different 
performance and results. The appropriate choice of a clustering method is a sig-
nificant and often overlooked aspect in extracting information from large-scale 
datasets. Evidently, such choice may significantly influence the biological in-
terpretation of the data. We present an easy-to-use and intuitive tool that com-
pares some clustering methods within the same framework. The interface is 
named COMPACT for Comparative-Package-for-Clustering-Assessment. 
COMPACT first reduces the dataset's dimensionality using the Singular Value 
Decomposition (SVD) method, and only then employs various clustering tech-
niques. Besides its simplicity, and its ability to perform well on high-
dimensional data, it provides visualization tools for evaluating the results. 
COMPACT was tested on a variety of datasets, from classical benchmarks to 
large-scale gene-expression experiments. COMPACT is configurable and ex-
pendable to newly added algorithms.  

1   Introduction 

In the field of genomics and proteomics, as well as in many other disciplines, classifi-
cation is a fundamental challenge. Classification is defined as systematically arrang-
ing entities (data-points) into specific groups. Clustering, being an unsupervised 
learning problem, may be regarded as a special case of classification with unknown 
labels (for more details see [1], [2]). In gene expression microarray technology, a 
hierarchical clustering algorithm was first applied to gene-expression data at different 
stages of cell cycle in yeast  [3]. During recent years several algorithms, originating 
from various theoretical disciplines (e.g., physics, mathematics, statistics and compu-
tational neuroscience), were adopted and adjusted to gene expression analysis. They 
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are useful for diagnosis of different conditions for example differentiating between 
sick and healthy tissues, and classification to subtypes of a disease. An additional 
outcome of applying such algorithms to gene-expression data was the revealing of 
functional classes of genes among the thousands used in experimental settings  [4]. 
Furthermore, it became possible, and useful, to isolate groups of relevant genes that 
mostly contribute to a particular condition, in the correlative or derivative perspective, 
a procedure called bi clustering  [5]. 

By their nature, data points that are collected from large-scale experimental set-
tings suffer from being represented in a high dimensional space. This fact presents a 
computational and an applicative challenge. Compression methods that maintain the 
fundamental properties of the data are called for. 

As clustering algorithms are rooted in different scientific backgrounds and follow 
different basic principles, it is expected that different algorithms perform differently 
on varied inputs. Therefore, it is required to identify the algorithm that suits best a 
given problem. One of the targets of COMPACT is to address this requirement, and to 
supply an intuitive, user-friendly interface that compares clustering results of different 
algorithms.  

In this paper we outline the key steps in using COMPACT and illustrate it on two 
well-known microarray examples of Leukemia [4], and yeast datasets [6]. For a com-
parative analysis we included routinely used clustering algorithms and commonly 
applied statistical tests, such as K-Means, Fuzzy C-Means and a competitive neural 
network. One novel method, Quantum Clustering (QC) [7], was added to evaluate its 
relative performance. The benefit of applying COMPACT to already processed data is 
demonstrated. All four algorithms that were applied in analyzing these datasets were 
compared with a biologically based validated classification. We conclude that the 
compression of data that comprises the first step in COMPACT, not only reduces 
computational complexity but also improves clustering quality. Interestingly, in the 
presented tested datasets the QC algorithm outperforms the others. 

2   Implementation 

After downloading and configuring COMPACT, four steps should be followed: defin-
ing input parameters, preprocessing, selecting the clustering method and presenting 
the results. 

2.1   Input Parameters 

COMPACT receives two input parameters that are Matlab variables: data (a two-
dimensional matrix) – represents the elements to be clustered, and 'real classification' 
(an optional, one-dimensional vector) – representing the elements according to an 
expert view and is based on bulk biological and medical knowledge. 

2.2   Preprocessing 

a) Determining the matrix shape and which vectors are to be clustered (rows or 
columns). 

b) Preprocessing Procedures: SVD, normalization and dimension selection. 
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2.3   Selecting the Clustering Method 

a) Points' distribution preview and clustering method selection: The elements of 
the data matrix are plotted. If a 'real classification' exists, each of its classes is 
displayed in a different color. One of the clustering methods, K-means, FCM 
(fuzzy C-means), Competitive NN (Neural Network) or QC (Quantum Cluster-
ing) is to be chosen from the menu.  

b) Parameters for clustering algorithms: depending on the chosen method, a spe-
cific set of parameters should be defined (e.g., in the K-Means method – num-
ber of clusters). 

2.4   COMPACT Results 

Once COMPACT completes its run, the results are displayed in both graphical and 
textual formats (results can be displayed also in a log window). In the graphical dis-
play, points are tagged by the algorithm. The textual display represents Purity and 
Efficiency (also known as precision and recall or specificity and sensitivity, respec-
tively) as well as the joint Jaccard Score1. These criteria for clustering assessment are 
defined as follow: 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. A screenshot of the graphical view on the results produced by COMPACT 

                                                           
1 The Jaccard score reflects the ‘intersection over union' between the algorithm and ‘real’ clus-

tering, and its values range from 0 (void match) to 1 (perfect match). 
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Where: 
• n11 is the number of pairs that are classified together, both in the ‘real’ classifica-

tion and in the classification obtained by the algorithm. 
• n10 is the number of pairs that are classified together in the correct classification, 

but not in the algorithm’s classification. 
• n01 is the number of pairs that are classified together in the algorithm’s classifi-

cation, but not in the correct classification. 
 

Ending the application will add a new variable to the Matlab workspace: calcMapping 
- a one-dimensional vector that represents the calculated classification of the ele-
ments. 

3   Results 

We applied several of the most commonly used clustering algorithms for gene expres-
sion data. By analyzing the results of COMPACT we observe significant variations in 
performance. In the following we compare the performance on different datasets. We 
choose to use datasets that were heavily studied and for which an expert view is  
accepted. 

3.1   COMPACT Tests of Leukemia Microarray Expression Data 

We tested COMPACT on the dataset of Golub et al. [4] that has served already as a 
benchmark for several clustering tools (e.g. [2], [8], [9], [10], [11]). The experiment 
 

Table 1. COMPACT based comparison for the Golub dataset [4]. For details see text. 

 Method Jaccard Purity Efficiency 

Raw data    
 K Means  

0.257 0.369 0.459 
 Fuzzy C Means (FCM) 

0.272 0.502 0.372 
 Competitive Neural Network (NN) 

0.297 0.395 0.547 
 Quantum Clustering (QC) NA NA NA 

Preprocessing (SVD)    
 K Means  

0.4 0.679 0.494 
 Fuzzy C Means (FCM) 

0.316 0.584 0.408 
 Competitive Neural Network (NN) 

0.442 0.688 0.553 
 Quantum Clustering (σ= 0.54) 0.707 0.77 0.898 
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Fig. 2. Jaccard scores of the four algorithms tested by COMPACT on the Golub dataset. Left: 
before compression, Right: following application of the SVD compression step. Note that an 
improvement is detected for all methods by a preprocessing step. 

 

a b 
Fig. 3. A graphical comparison of COMPACT results on Leukemia dataset. The samples (pa-
tients) are ordered by their groups: samples 1-37: group #1, samples 38-47: group #2, samples 
48-62: group #3 and samples 63-72: group #4. The four ‘real’ classes are distinguished by the 
background color (white, gray, white and gray), whereas black bars demonstrate the algo-
rithm’s classification. For example, in (a) the first sample belongs to the ‘correct’ first group 
(white background); while the algorithm placed it in the second group (the black bar is at group 
#2). Shown are the results of (a) K-means (K=4) and (b) QC (Quantum clustering, σ = 0.54) for 
clustering the AML/ALL cancer cells after SVD truncation to 5 dimensions. 

sampled 72 leukemia patients with two types of leukemia, ALL and AML. The ALL 
set is further divided into T-cell leukemia and B-cell leukemia and the AML set is 
divided into patients who have undergone treatment and those who did not. For each 
patient an Affymetrix chip measured the expression of 7129 genes.  

The clustering results for four selected clustering algorithms are shown in Table 1. 
A comparison of the Jaccard scores for all algorithms is displayed in Figure 2 and two 
clustering assignments are compared in Figure 3. Applying the selected algorithms to 
the raw data (i.e., without an SVD preprocessing) yields poor outcomes.  

Next we applied the SVD preprocessing step selecting and normalizing the 5 lead-
ing SVD components ('eigengenes' according to Alter, [12]) thus reducing the matrix 
from 7129X72 to 5X72. Clustering has improved after dimensional truncation, yet not 
all algorithms correctly cluster the samples. Note that only QC shows a substantial 
degree of consistency with the ‘real’ classification (Jaccard. = 0.707, Purity = 0.77 
and Efficiency = 0.898, for discussion see Horn & Axel [13]). 
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3.2   COMPACT Tests of Yeast Cell Cycle Data 

Next we test the performance of COMPACT for clustering of genes rather than sam-
ples. For this goal we explore the dataset of yeast cell cycle presented by Spellman et 
al. [6]. This dataset was used as a test-bed for various statistical and computational 
methods 14]. The expression levels of 798 genes were collected from 72 different 
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Fig. 4. Jaccard scores of the algorithms in the COMPACT based comparison for the Spellman 
dataset (shown are results for four clusters analysis) 

Table 2. COMPACT based comparison to the Spellman dataset of Cell cycle in Yeast [6] 

 Method Jaccard Purity Efficiency 

Raw data    
 K Means (5 clusters) 0.435 0.617 0.596 

 K Means (4 clusters) 0.488 0.64 0.673 
 Fuzzy C Means (5 clusters) 0.425 0.663 0.542 

 Fuzzy C Means (4 clusters) 0.438 0.458 0.912 

 Competitive Neural Network (4 clusters) 0.424 0.53 0.68 

 Quantum Clustering NA NA NA 

Preprocessing     
 K means (5 clusters) 0.406 0.636 0.528 
 K means (4 clusters) 0.46 0.626 0.634 
 Fuzzy C means (5 clusters) 0.4 0.63 0.522 
 Fuzzy C means (4 clusters) 0.459 0.624 0.634 
 Competitive Neural Network (5 clusters) 0.33 0.55 0.458 
 Competitive Neural Network (4 clusters) 0.516 0.658 0.706 
 QC after SVD (σ =0.595) 0.554 0.664 0.77 
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conditions that reflect different time points in the yeast cell cycle. The task in this 
case is to cluster these 798 genes into five classes identified by Spellman et al. 
through functional annotations of individual genes.  

We applied COMPACT both to ‘raw’ data and to SVD compressed data. In the lat-
ter case we selected two leading normalized SVD components ('eigensamples' accord-
ing to Alter, [12]), thus reducing the matrix size from 798X72 to 798X2. All four 
clustering methods were tested as before. Once again the results obtained by the QC 
are moderately superior. 

We have tested all methods for both 4 and 5 clusters (Table 2 and Figure 4). Inter-
estingly enough, 4 clusters seem to be a better choice in all cases, although the 'real’ 
classification defines 5 classes. 

4   Discussion 

In this paper we demonstrate how different clustering algorithms may lead to different 
results. The advantage of COMPACT is in allowing many algorithms to be viewed 
and evaluated in parallel on a common test set. Through COMPACT one can evaluate 
the impact of changing the algorithm or its parameters (e.g., sigma value in QC, num-
ber of iterations for the Competitive Neural Network, starting points of K-Means, 
Fuzzy C-Means and more). Being able to run a number of clustering algorithms, ob-
serve their results (quantitatively and graphically) and compare between them is bene-
ficial for researchers using gene expression, proteomics, and other technologies that 
produce large datasets. We find it advisable to start with a problem that has a known 
classification (referred to as ‘real classification’) and use the statistical criteria (i.e., 
efficiency, purity and Jaccard score) to decide on the favorable clustering algorithm. 
For general research problems, where no known classification exists, the same statis-
tical tools may be used to compare results of different clustering methods with one 
another. We presented here a comparative analysis of some well-known clustering 
methods with one relatively new method, QC. For the two datasets that we have ex-
plored, QC outperformed the other methods. 

We have shown that dimensionality reduction improves the clustering quality. This 
observation is highly relevant when handling genomic data. Recall that for Affy-
metrix microarrays the number of genes tested reaches all known transcripts from the 
selected organism, producing 20,000-30,000 data points for a mammalian genome. 
Similarly, the application of the new SNP discovery chip produces a huge number of 
noisy data points in a single experiment. Besides its computational complexity, one of 
the major challenges when using massive data is to identify features and to filter out 
noise. Often handling such high dimensional noisy inputs can be a barrier. Hence it is 
important to develop more efficient and accurate tools to tackle these problems (see 
examples in [3], [4], [15], [16]). Thus, constructing a method that can significantly 
reduce data volume, and at the same time keep the important properties of that data, is 
obviously required.  

COMPACT offers easy-to-use graphical controls for users to select and determine 
their own preferences, and graphical displays where the results can be presented or 
saved for later usage. It offers several clustering algorithms and allows the user to 
compare them to one another.  
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Although similar tools have already been proposed (e.g., [17], or [18]), the novel-
ties of COMPACT are: (i) presenting an integrative, light package for clustering and 
visualization, (ii) integrating an efficient compression method and (iii) introducing the 
QC algorithm as part of the available clustering options. 

The beginners will find this user-friendly tool with its graphical and textual dis-
plays useful in their data analysis. The experts will benefit from its flexibility and 
customizability that enables expanding the tool and modifying it for advanced, spe-
cialized applications.  
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Availability: COMPACT is available at http://www.protonet.cs.huji.ac.il/compact 
and at http://adios.tau.ac.il/compact . A detailed description of the application can be 
found on these websites. 
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