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Abstract 

We investigate the formation of synfire waves in a balanced network of integrate  

and fire neurons. The synaptic connectivity of this network embodies synfire 

chains within a sparse random connectivity. This network can exhibit global 

oscillations, but can also operate in an asynchronous activity mode. We analyze the 

correlations of two neurons in a pool as convenient indicators for the state of the 

network. We find, using different models, that these indicators depend on a scaling 

variable. 

Beyond a critical point, strong correlations and large network oscillations are 

obtained. We looked for the conditions under which a synfire wave could be 

propagated on top of an otherwise asynchronous state of the network.  This condition 

was found to be highly restrictive, requiring a large number of neurons for its 
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implementation in our network. The results are based on analytic derivations and 

simulations.  

 

 

1 Introduction 

 

Synfire chains (SFCs) were first introduced by Abeles (1991) as a model for solving a 

wide array of cognitive and computational tasks. They incorporate rate coding with 

specific synchronous activity, and have been shown to be candidates for representing 

elementary cognitive functions (Bienenstock, 1995) such as binding (Hayun, 2002). 

A SFC dictates a well-defined connectivity pattern among neurons in the form of 

feed-forward connections between pools of neurons. In a complete chain, all w 

neurons in a pool ('pre-pool') connect to all neurons in the successive pool, thus 

creating a chain of pools. Input connections as well as outputs are allowed, as shown 

in Figure 1. 
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Figure 1: The connectivity of a Synfire Chain. The connection between three pools is shown. In 

the complete chain, each neuron in a pool receives inputs from all w neurons in the pre-pool (w=3 

in this figure). In addition, each neuron receives inputs from (and projects to) many other 

neurons in the network. Note that a neuron can participate in many pools.   

 

If w, the number of neurons in a pool, is large enough, then a synchronized firing 

volley of most of the neurons in a pool, a pulse packet, may propagate along the chain 

(Diesmann, Gewaltig, & Aertsen, 1999). 

To avoid terminological confusion, these feed-forward connectivity schemes are 

referred to henceforth as chains, and the pulse packet propagating along a chain as a 

synfire wave (or simply a wave). A wave can propagate in a synchronized manner 

along a chain, or it can lose its synchrony, dissolving into the background activity. A 

wave is said to be stable if it reaches the end of the chain as a synchronized pulse 

packet. 

 

We begin by focusing on a chain that is embedded in a large network, whose neurons 

produce some asynchronous low background activity. Each neuron in the chain 

receives occasional pulse packets from its pre-pool, as well as some background 

activity. What are the effects of the background activity on the waves? Can waves 

travel along chains in a stable manner in the presence of background noise, or will 

they eventually dissolve into the background activity? Can the background noise 

cause spontaneous emergence of waves along chains? 

Diesmann et al (1999) have shown that if the number of neurons in a pool is large 

enough, and if the igniting pulse packet is synchronized and strong enough, the waves 

are stable in the presence of background noise.  
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Naturally, the next question is whether we can model a network that is capable of low 

spontaneous asynchronous activity with similar properties of a cortical tissue that is 

also capable of hosting stable synfire waves. In such a network, the effect of the 

background activity on the wave is important, but the effect of the chain on the 

asynchronous state of the network is also crucial. 

 

In this paper we investigate these issues by studying the correlations of two neurons 

that belong to the same pool. We show that the correlations allow us to distinguish 

between the different states of the network activity. High correlations occur when the 

system is in an oscillatory state, one where a synfire wave will be lost in the 

background of spontaneous activity. The challenge is to find the appropriate 

parameters such that stable waves exist in a background of asynchronous global 

activity and irregular spiking of individual neurons. 

This problem arises from the existence of two constraints: On one hand the system is 

required to maintain a stable asynchronous state, thus enabling rate coding. On the 

other hand, we require the network to allow synchronous propagation of pulse packets 

– a kind of temporal code. Are these two modes mutually exclusive? As we shall see, 

it is possible to set up a network with physiological and anatomical realistic 

parameters that is capable of operating in both modes simultaneously. 

In the context of the two-neuron problem, we use a simple, analytically amenable, 

model that enables us to write an equation that describes the evolution of correlation 

along a chain. This equation is independent of the input firing rate and leads to the 

emergence of a new scaling variable. A more realistic Integrate-and-Fire neuronal 

model does show dependence on firing rates. Nevertheless, we find that the scaling 

variable still functions as a critical parameter. 
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Moreover, the same holds not only for a pair of neurons, but also in the full network 

simulation. Our analysis, which is based on correlations, suffices for the discussion of 

the issues that we confront; hence we do not delve into the evolution of firing-rates. 

(For the latter see Tettzlaff et al. 2002). 

Experimentally, neuron activity is typically characterized by steady low (2-5Hz) 

firing rates, with irregular spiking (Abeles, 1991). To accommodate this observation 

with the known anatomical fact (Abeles, 1991) that there can be many inputs (around 

20,000 excitatory and 2,000 inhibitory synapses) to a neuron, it was suggested 

(Shadlen & Newsome, 1994; Gerstein & Mandelbrot, 1964) that excitatory and 

inhibitory inputs cancel each other out, thus reducing the mean input to virtually zero. 

Thus the firing of a neuron reflects fluctuations of the membrane potential that elicit 

occasional crossing of the threshold. Another solution (Softky & Koch, 1993) has 

been to argue that temporal correlation of the EPSPs elicit neuronal firing. 

We consider a system that allows both solutions to coexist. First, the input is 

balanced, and second, waves of activity propagate by means of strong temporal 

correlation.  

To create large fluctuations with a constant mean, we balance the excitatory input 

with an inhibitory input. A network is said to be balanced (van Vreeswijk & 

Sompolinsky, 1998) if each neuron in the network receives equal amounts of 

excitation and inhibition. Its membrane potential will then fluctuate around some 

mean value and the firing process is noise driven, and therefore irregular. Balanced 

networks (BN) have been shown (Brunel, 2000) to mimic the in-vivo firing statistics 

of cortical tissue, and it is therefore plausible that cortical neurons receive balanced 

input. BN has also been shown (van Vreeswijk & Sompolinsky, 1998) to have a stable 
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asynchronous state, as well as appropriate rate coding properties, such as fast tracking 

of changes in external input rates. 

Generally, BN assumes sparse and random connectivity. It is possible to embed SFCs 

in the excitatory-to-excitatory (E-E) connections of a BN, but this would violate the 

random connectivity assumption. Would this also disrupt the desired properties of a 

BN? As we show, there is a wide regime of parameters in which such lack of 

randomness has little effect. 

 

 

2 The Model 

 

Following Brunel (2000), we use an Integrate-and-Fire (IAF) model, in which the i-th 

neuron’s membrane potential, Vi(t), obeys the equation: 

(1) )()()( tRItV
dt

tdV
ii

i +−=τ ,  

where  Ii(t) is the synaptic current arriving at the soma and R is the membrane 

resistance. Spikes are modeled by delta functions; hence, the input is written as 

(2) , ∑∑ −−=
j t

f
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f
j

DttJtRI )()( δ

where the first sum is over different neurons, whereas the second sum represents their 

spikes arriving at times .  is the emission time of the f-th spike by neuron 

j, and D is a transmission delay, which we assume here to be the same for any pair of 

neurons. The sum is over all neurons that project their output to neuron i, both local 

and external afferents. 

Dtt f
j −= f
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When Vi(t) reaches the firing threshold θ , an action potential is emitted by neuron i, 

and after a refractory period rpτ , during which the potential is insensitive to 

stimulation, the depolarization is reset to Vreset. 

The following parameters were used in all simulations: The transmission delay D = 

1.5ms, the threshold θ  = 20mV, the membrane time constant τ  = 10 ms, the 

refractory period rpτ = 0.5ms, the resetting potential Vreset = 0mV and the membrane 

resistance . Ω=R 40M

The inhibitory and excitatory neurons have identical parameters. 

We used the SYNOD simulation environment (Diesmann, Gewaltig, & Aertsen, 

1995) for simulations with less than 10,000 neurons and a parallel version of SYNOD 

for simulation with more neurons. In the simulator, the Lapique (Tuckwell, 1988) 

model was used as an IAF model with time steps of 0.1ms. 

 

Unless otherwise specified, we set the synaptic weights JIE = JEE = J, JEI = JII = -gJ 

with g=5 and J=0.14mV. The constant g is the relative strength of the inhibitory 

synapses, and J is the EPSP amplitude. Note that the synapses are weak, as J<<θ , and 

the total input to a neuron is approximately balanced. 

 

When simulating a pair of neurons in a pool, the neurons receive local excitatory and 

inhibitory input from the network as well as external input from external excitatory 

sources that feed the entire network. For simplicity’s sake, we assume that the 

neurons have a single pre-pool. Thus, the neurons receive 4 types of input, 3 of which 

are local: KI inhibitory synapses, w excitatory synapses that come from the previous 

pool, and K-w excitatory synapses from other random connections in the network. The 

fourth type of input is represented by K excitatory synapses that convey external 
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stimulation. Each of these inputs is modeled as an independent Poisson process with 

rates υI, υE and υext, for the local inhibitory, local excitatory and external excitatory 

synapses, respectively. In the simple model, which will be defined later, we refine the 

architecture further to include common inputs due to random connections. 

As a method for inducing correlations between spike-trains, we use a ‘mother 

process’: a Poisson process with rates v/ρin, from which we copy spikes with 

probability ρin. The method is described in detail in Kuhn et al (2002). In order to 

measure the output correlation between two spike trains, we first binned the spike 

train into 1ms bins (each spike is of width 0.1ms), and then  computed the zero-lag 

cross-correlation.  

When simulating the entire network, we simulate all the NE excitatory neurons, as 

well as the NI=NE /4 inhibitory neurons. A Poisson process with rate υextK simulates 

the external input. υext is in units of υthre, where υthre τ
θ

JK≡ is the minimal rate needed to 

emit a spike within τ milliseconds (on the average) in a neuron that does not get other 

inputs. In this paper we set threext νν 5.1= , which is equivalent to an external rate that 

ranges between 2Hz and 21Hz, depending on the value of K. The total input to a 

neuron is, therefore, nearly balanced. There is a small bias toward an excess of 

excitation, which controls the firing rates. 

A sparse connectivity is required, both to adhere as closely as possible to biological 

values and to induce a source of randomness. Here we set the sparseness ε to be 0.1, 

i.e. IIE NKNK εε == , . In addition to the external input (which are K excitatory 

afferents), each neuron in the network receives K excitatory and KI inhibitory 

afferents, randomly sampled, from the excitatory and inhibitory population, 

respectively. 
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Wiring the network is performed as follows: 

In general, all the connections are chosen at random, except for the E-E connections, 

which are a superposition of chains. For wiring the E-E connections, each randomly 

chosen pool of w neurons is wired in an all-to-all fashion to the consecutive pool. We 

continue this process until the desired number of pools has been reached. We also 

ensure that a neuron will not receive more than K local connections. If a neuron does 

not receive K afferents, and there are no more pools to be added – we randomly 

choose additional source neurons for it. At the end of the process, all the excitatory 

neurons have exactly K afferents, and there are chains hardwired into the connectivity 

matrix of the E-E connections. 

The resulting connectivity is a mixture of random connectivity and chains. The 

number of pools is restricted by the number of excitatory synapses, and is therefore 

less than 12 +
w

KNE . In our simulation we set the number of pools at 1000. If this was not 

possible due to the above limit, the simulation was not performed. A tighter bound on 

the number of pools is given by the capacity of the system, as discussed in Section  6. 

 

 

3 The Challenge 

 

The foregoing enabled us to pursue the following scenario. We start with a BN that 

embodies chains in its connectivity matrix, as described in the previous section. In the 

absence of external ignition of a wave, we consider the state with global asynchronous 

activity to be the ground state of the system. External ignition of a SFC will perturb 

the system from its ground state, leading to wave propagation, masked by the overall 
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activity. Once the ignited wave has reached the end of the chain, the system should 

return to its ground state.  

 

Brunel (2000) has shown that BNs of IAF neurons display four major stable states for 

different regimes of the external input rate, vext, and the level of balance. The four 

states are all combinations of the two possible global (population level) activities and 

the two possible neuronal firing patterns; the global activity can be either synchronous 

or asynchronous, whereas the neurons can fire in a regular or irregular fashion. Of 

special interest to us is the state that is characterized by asynchronous population 

activity and irregular neuronal firings. Following Brunel’s terminology, this is the 

asynchronous-irregular (AI) state. 

The network model described in Section  2 is identical to Brunel’s model except for 

the connectivity; namely, in Brunel’s model the connectivity is completely random, 

whereas we embody chains in the network. Another difference is in the dynamic 

parameters. Brunel varied vext, and g in order to obtain different states, here we only 

vary the chain width, keeping vext, and g constant. 
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Figure 2: Population rate of a BN with embedded SFCs indicates a qualitative change in network 

behavior, as chain width increases. (a) With a chain of width w=150, the network is in an AI 

state, characterized by low asynchronous population activity and very mild oscillations with 
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small amplitudes. Average firing rate of the excitatory (inhibitory) neurons in this mode is 

12.9Hz (25.7Hz). (b) Increasing the width to w = 250, a synchronous state appears, characterized 

by sporadic abrupt synchronized bursts with large amplitudes. The average firing rate of the 

excitatory (inhibitory) neurons is 36Hz (73Hz). Population rate is the percentage of excitatory 

neurons that fired in a 0.2 ms. The network parameters are NE=50,000, K = 5000, number of 

pools: 1000.  

As shown in Figure 2a, a BN that embodies chains displays behavior similar to that of 

Brunel’s AI state (Brunel, 2000). This suggests that a small departure from 

randomness does not refute the results obtained for random networks. Consequently, 

we use the AI state as the ground state of our system. We search through parameter 

space to find this regime in our model. 

To allow stable propagation of a wave along a chain, we need large pools (Diesmann 

et al., 1999). However, when w is too large, as is the case in Figure 2b, the AI state 

loses its stability, with a transition similar to the phase transition that takes place in 

Brunel’s model when moving from the AI state to the synchronous-irregular (SI) 

state. In the SI state, as in Figure 2b, the population activity is synchronous, and the 

neurons fire irregularly. (It should be noted, however, that the global oscillations in 

our case exhibit stronger irregularity than the one of Brunel’s SI state. See Figure 8 

there.) In the next section, we will see that the transition is due to high correlations 

between neurons with a relatively large common input. 

The challenge is to construct a network in which w is large enough to allow stable 

wave formation yet is not too large to destabilize the asynchronous state. 

 

 

4 A pair of neurons 
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As hinted above, we suspect that in the case of large w, the embedded chains 

stimulate the emergence of correlated spike trains. To see this, consider a pool in a 

chain. The converging connections from the pre-pool to all the neurons in the pool 

induce an input that is common to all the neurons in that pool, possibly leading to 

correlations among these neurons’ spike trains. This surplus of correlations underlies 

the instability of the asynchronous state in the full network.  

We start by studying the effect of common inputs on a pair of neurons that belong to 

the same pool of an embedded chain. In particular, we are interested in the correlation 

coefficient between the spike trains of a pair of neurons in a pool, ρout. In Figure 3, we 

describe schematically a pair of neurons and their inputs. Being part of the same pool, 

they share a common input of at least w neurons from the previous pool (Ecc) and 

some other common input due to random connectivity (Ec and Ic). They also receive 

excitatory (E) and inhibitory (I) inputs that are independent for the two neurons. For 

simplicity, we assume that all inputs are uncorrelated, except for the w common input 

(Ecc) that have a pairwise correlation coefficient ρin. 
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Figure 3: Two neurons of the same pool receive common input; the total input to each neuron is 

divided into five uncorrelated sub-fields: independent inhibitory and excitatory (E and I), 

common inhibitory and excitatory (Ec and Ic) and correlated common excitatory (Ecc) from the 

previous pool. Solid lines represent excitatory inputs, and dashed lines inhibitory inputs. 

Expressions in parentheses denote the number of synapses that establish each type of input. The 

total number of excitatory inputs is 2K, and the total number of inhibitory inputs that each 

neuron receives is K. Both neurons receive, on average, common input from u excitatory and u 

inhibitory neurons. The pairwise correlation assumed among inputs in Ecc, ρin, affects the 

correlation between the pair of output neurons, ρout. 

We will define ρh to be the correlation coefficient between the two membrane 

potentials. 

The effect of the common input, w, on the correlation between two neurons, ρout, can 

be studied in two steps: 
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1. The effect of the common input on the correlation of the two membrane 

potentials: ρh(w, K, ρin). 

2. The effect of the correlated membrane potentials on the correlation of the 

neurons' output: ρout(ρh). 

 

We start with a simplified neuronal model, in which a natural scaling of K
w  

emerges, and a transition in the level of correlations is found. We then proceed to an 

IAF model, where we find similar qualitative results. 

 

4.1     A simple model 

In Appendix A, we define a semi-linear model, the simple model, leading to an 

analytic expression of ρh(w, K, ρin): 

(3) ( )
( ) in

in
inh

wKg
wKg
ρ
ρερρ 22

22

2
1)(

++
++

=  

Defining ( )22 gq +≡ , and dividing the nominator and denominator by K, yields: 

(4) ( )
in

in
h

rq
rq
ρ

ρερ 2

21
+

+−
=  

where 
K
wr ≡ , is the scaling variable of this system.  

Note that ρh is not a function of the input or output rates in this model. Also note that 

for r=0 and ε>0, ρh
 is always positive. That means that even a pair of neurons with 

common input that is only due to the random connectivity – tends to correlate.  

In a network where a pattern of connectivity as in Figure 3 is abundant, ρout of a pair 

of neurons is likely to be ρin for another pair of neurons. An example of such a 

network is one with chains hardwired into its connectivity matrix. 
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In such cases it is relevant to seek a fixed-point of pairwise correlations, ρ*, that 

obeys: ρout= ρin=ρ*. As argued in Appendix A, under the constraint of Eq.  (11) ρout = 

ρh, thus it is straightforward to look for such a fixed-point.  

In Figure 4a, the ρout(ρin) is plotted for several values of r. We note that ρout(ρin) 

crosses the diagonal with slope less than 1 exactly once, for all values of r, resulting 

with a globally stable fixed-point: ρ*. 

 

We calculate ρ* from Eq.  (4) by letting all ρ variables to be equal to ρ* and taking the 

positive solution: 

(5) 
( ) ( )

2

2222
*

2
14

r
rqrqqr ε

ρ
−+−+−

=  

Two important observations follow from this equation. One is that the result is 

independent of the firing rate, which we assume is an artifact of the simplified model. 

The other is that the behavior of this equation is a function of the ratio r, and not of K 

and w separately. This implies that scaling w by K  is the relevant scaling when 

considering correlation coefficients in this model.  

 

Figure 4

Figure 4

b displays ρ* as a function of the scaling variable r. The curve displays a 

transition from low to high correlations near a critical value of r, qrc = . Strictly 

speaking, the transition becomes sharp only in the limit ε 0. As can be observed in 

b, in this limit, the stable fixed point is zero for r smaller than rc, whereas 

above rc it diverges rapidly. 
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Figure 4: Transition in the simple model. (a) ρout as a function of ρin for different values of r: 1, 2, 

3, and 10. The curves cross the diagonal (dashed line) exactly once, creating a globally stable 

fixed-point. (b) The steady state correlation (solid line, ε=0.1) exhibits a transition from low to 

high correlation near the critical point, rc (dashed line). In the limit ε 0, the transition becomes 

sharp (dash-dotted line). Parameters: K=10,000, g=1. 

 

4.2       An Integrate and Fire model 

When considering transmission of a highly correlated signal in an asynchronously 

active population as we do in this study, two main variables should be examined: 

neuronal firing rates and correlations between neurons. Clearly, both these variables 

depend on each other. Several studies have dealt with these variables:  

Tetzlaff et al (2001) focused on the evolution of output rates as a function of input 

rates along a chain with noisy input, but disregarded the issue of correlation. An 

integrative study, however, is currently being conducted by Tetzlaff et al (2002). 

Salinas and Sejnowski (2000) studied the firing rates and their variability as a 

function of input correlation. The correlation in the input was a result of a common 

input or common oscillation in the input rates. Analytical results based on a random 

walk model with drift gave results that were qualitatively similar to a conductance-

based IAF model. In addition, in (Feng & Brown, 2000), the authors discussed the 
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impact of temporally correlated input on the output statistics of an IAF neuron. 

Stroeve and Gielen (2001) considered the correlation between a pair of neurons as a 

function of a correlated common input. They follow a similar logic to ours and 

compute ρout(ρin) for conductance-based IAF model; the resulting ρ* was not derived. 

Here, we study the evolution of the output correlation as a function of the spatially 

correlated input in an IAF model. 

The IAF model is less amenable to analytic studies than the simple model. Hence we 

turn to simulations in order to compute ρout(r, ρin, vin). Note that we added the input 

firing rate vin as an additional parameter. This is due to the fact that input rates affect 

correlations of IAF neurons (Salinas & Sejnowski, 2000; Stroeve & Gielen, 2001; 

Tetzlaff et al., 2001). 

Figure 5 a shows ρout(ρin) for different w and for fixed values of K and vin. In contrast 

to the simple model, ρout can cross the diagonal more than once. 

We look for the fixed-point correlations in the dynamic steady state of the system. 

Following the procedure used for the simple model, we extracted the intersection 

points of the curve with the diagonal ρout(ρ*)= ρ*. We also calculated the stability of 

these fixed-points, by measuring the slope at the point of intersection. The results are 

depicted in Figure 5b; if 1* <ind
d
ρ
ρ  the fixed-point is stable (thick line), otherwise – it is 

unstable (thin-dotted line). 
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 Figure 5: Transition in IAF neurons. (a) ρout as a function of ρin for different values of r 

(indicated above each curve). The crossings of the sigmoid curves and the diagonal (dashed line) 

yield the fixed-point correlations. (b) Fixed-point correlations as a function of r. Stable fixed 

points are indicated by thick line and the unstable ones by thin-dotted line. Note that ρ*=0 is 

stable for any r in the range. Parameters: K=9,000, vin=1.5*vthre.  

Figure 5

Here, we define rc to be the point where the saddle node bifurcation appears.  

Note that the details of the results of  depend on the way correlations were 

introduced. Following the Poisson mother process, as explained in Kuhn et al (2002), 

we  introduced correlations well beyond the second order. Had we limited ourselves, 

instead, to currents with second order correlations only, such as h1 and h2 of the 

appendix, the value of rc would change considerably. 

Unlike the simple model, we note that for small r.ρin, ρout~0. This insensitivity of the 

output correlation reflects the fact that the neurons' input is not completely balanced. 

Had the neurons' input been perfectly balanced, ρout would have been more sensitive 

to small input correlation. However, we chose the same neurons parameters as in our 

simulations of the full network, so as to better match the full network simulation. 

For r> rc, the system is bi-stable. This is different from the simple model in Figure 4b 

that had one global stable fixed-point for any value of r. Note, however, that although 

this two-neuron system is bi-stable, this does not imply that a network of IAF neurons 

will be bi-stable. Even if the network settles first in the lower (zero correlation) 

branch, transient spontaneous correlations may evolve, pushing the network into the 

basin of attraction of the upper branch. In fact, our network simulations described in 

the next section display either a low-correlation AI mode, or a high-correlation 

synchronous mode of activity, depending on the parameters of the network. 

Moreover, we show in the next section that the critical behavior of the whole network 

displays scaling in the same variable r as predicted by the simple model. 
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5 The full network 

 

The main lesson from our study of a pair of neurons is the existence of a rapid 

transition between low correlations to high correlations as function of the scaling 

variable Kwr = . 

This type of behavior is also reflected in the simulations of IAF networks. In our 

simulations we use K=N/10. Running networks with different values of K (and N) we 

search for the transitions, as function of w, of the networks from their AI mode to the 

global oscillatory mode. One possible measure is the coefficient of variance (CV) of 

population rate defined as the standard deviation of population rate divided by the 

mean of population rate, shown in Figure 6. Plotting the results as function of the 

scaling variable r we see that the different curves coincide; thus this is a valid scaling 

relation for our problem. A sharp transition is observed around rc=2.5 in these 

networks. 
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Figure 6: Scale invariance in the full network. The synchrony measure as a function of r, for 

different network sizes. Digits inside the figure denote the size of K in thousands. w range from 
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150 to 500 in steps of 50. Population rate is defined as in Fi . Mean excitatory firing rates 

for r~2 is 13Hz (std.dev. across the different population sizes 5). Mean excitatory firing rates for 

r~5 is 41Hz (std.dev. 7). 

gure 2

Once we have gained some knowledge about the critical w, Krw cc ≡ , above which 

strong correlations are inevitable, we can inquire whether wc is large enough to enable 

a stable transmission of waves. 

Diesmann et al (1999) pointed out that as w decreases, the basin of attraction of the 

stable pulse packets shrinks. Stated otherwise, there is a minimal w, wmin, below 

which waves dissolve. Our challenge is meeting the contradicting requirements of 

small w, to avoid oscillations in the BN, and large w, to enable stable waves. In short, 

we look for the range 

(6) wmin < w < wc  

where wmin depends on 
EE

reset
J
v−θ . We conclude that K has to be large in order to find a 

range of w satisfying  (6). 
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For our IAF model parameters, we find wmin > 230 and rc ≈ 2.7. We choose r=2.5, 

therefore, ( )25.2
230>K , or simply K=9000. Since in our architecture ENK ε= , where 

1.0=ε , we have to simulate NE=90,000 excitatory neurons and NI=22,500 inhibitory 

neurons before we are able to observe a synfire wave in a balanced-network. 

(a) 

 

(b) 
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Figure 7: Three panels of raster plots. The neurons in the y-axis are ordered according to their 

participation in the pools. Only the first several pools are shown, where in each pool every 7th 

neuron is presented. (a) Asynchronous activity. The wave ignited at t=1600 dissolves 

(w=200<wmin) (b) Asynchronous activity. The wave ignited at t=1600ms is stable. First 30 pools 

are shown. (wmin < w=250 < wc). (c) Synchronous activity, no meaningful wave obtained (w-

c<w=300). Parameters: NE = 90,000. Mean excitatory/inhibitory firing-rates of panels a, b and c 

are 8/8, 4/13 and 26/24 Hz respectively. 

Figure 7

 

 shows results of the simulations that substantiate the theoretical analysis. 

A wave is ignited at t=1600ms. For (a) w = 200 < wmin, it dissolves after activating  

4 pools. In (b) wmin < w=250 < wc, the wave propagates successfully, activating 50 

pools (only the first 30 pools are shown). It should be noted, however, that due to the 

length of the chain, all waves ignitions lead to an oscillatory activity that eventually 

prevent the wave from reaching the end of the chain. For (c) w=300 > wc, global 

oscillations are obtained, drowning the synfire wave. 
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6 Summary 

 

Many papers (Abeles, 1991; Diesmann et al., 1999; Hertz, 1999; Tetzlaff et al., 2002) 

discuss properties of a single chain with stationary noisy inputs. In this work, we take 

the discussion one step further by embedding the chain in a balanced-network of IAF 

neurons. By simulating the entire network, we take into account the mutual influence 

of the chain on the network and vice versa. 

By insisting on working with a full network we discovered that the formation of 

synfire waves in a balanced network poses quite a challenge. In order to obey all 

constraints of Eq.  (6) we need a network of N=90,000 excitatory neurons or more. In 

other words, we conclude that large networks are needed in order to create the right 

conditions. Changing the details of the neuronal model could possibly reduce this 

high number of neurons. Reducing wmin to 100, (as, e.g., is the case in Diesmann et al 

(1999)) cuts the lower bound of K to near 1300, rather than 9,000 as in our case. As 

for the upper bound, it has been shown (Brunel and Hakim 1999, Brunel 2000) that 

the location of the transition from the asynchronous state to the synchronous state 

depends on the characteristics of synaptic processing (e.g. time constant, 

heterogeneity of time constant, etc.). Moreover, in recent simulations we have seen 

that adding inhibitory neurons to synfire pools may change the conditions of our 

network. 

Mehring et al. (2002) also studied a synfire chain embedded in a balanced network of 

locally connected IAF neurons. They investigated the propagation of synchronous 

activity for different spatial arrangements of a chain but they did not analyze the 

instability of the AI state, as only short chains with 10 pools were considered. 
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Tetzlaff et al. (2001, 2002) showed that for a chain with external Poissonian input the 

transition from the asynchronous to synchronous regimes is well determined by a pure 

rate model. This apparent contradiction may be a result of the small r used by Tezlaff 

et al. (2002). For small r values correlation does not play a significant role, but rates 

apparently do. 

As mentioned before, firing rates and correlations affect each other in an intricate 

manner. Therefore, we have put emphasis on verifying that the qualitative scaling 

behavior of the network, as depicted in Figure 6, holds for a range of external firing 

rates. There is always a critical r, but its value varies slightly as a function of the 

external rates, as can be expected from the IAF model. 

 

Previous studies within other models (Bienenstock, 1995; Hertz, 1999) have shown a 

critical dependence on the number of pools, a capacity limit analogous to that of 

stored memories in a feedback neural network. Here, by simulating a network of 

NE=90,000 and w=260, we have found the capacity to be on the order of 2000 pools. 

Embedding a higher number of pools leads to spontaneous global oscillations. We 

conclude that all our previous results hold only below the capacity limit. If one 

exceeds the capacity limit, global oscillations will appear, regardless of the value of r. 

 

There is current controversy between those who claim that neurons code information 

via their firing rate (Shadlen & Newsome, 1994), and those who believe that the 

information is conveyed in the exact timing of spikes (Softky & Koch, 1993). This 

debate engendered the concepts of  'balanced inputs' (Shadlen & Newsome, 1994) and 

'balanced networks' (van Vreeswijk & Sompolinsky, 1998). In (van Vreeswijk & 

Sompolinsky, 1998), it was shown that BN has properties useful for rate-coding 
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performance. Here, we demonstrate that BN are capable of temporal coding as well. 

Furthermore, both codes can be applied simultaneously. Thus, the network may 

multiplex rate and temporal codes. 
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7 Appendix A: The simple model 

 

We define a semi-linear neuronal model: 

(7)  [ ]+= )()( thtr ii

where the function [x]+ is x if x>0, and zero otherwise. hi(t) is the local field, defined 

as a sum of K excitatory and K inhibitory synaptic inputs: 

(8)  ( ) ( ) ( )∑∑
==

⋅−⋅=
K

m
m

K

l
li tsgJtsJth

1

2

1

Here, J is the fixed synaptic weight, sl(t) is the pre-synaptic input at time t, and g 

controls the excess (or shortage) of excitation in the local field. 

The variables sl(t)>0, l=1..3K represent the instantaneous firing rate of the pre-

synaptic neuron. For clarity, we will discard the time notation of the sl’s. 
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A semi-linear model is a crude caricature of an IAF neuron. Nevertheless, it enables 

the use of analytical tools, allowing for a better understanding of the phenomenon 

under inspection. Indeed, we find that a complex network of IAF neurons exhibits 

behavior that is predicted by the current semi-linear model. 

 

Correlation between two fields 

Given a pair of neurons in a pool, each having K external, as well as K local, 

excitatory synapses and K inhibitory synapses, as depicted in Figure 3. As a result of 

random connectivity, some of these synapses share a source that is common to both 

neurons. The mean number of these inputs is taken to be u-w for the excitatory 

synapses, and u for the inhibitory synapses. Finally, there are w inputs that are 

common to both neurons, which come from the previous pool.  

 

We divide the input field of a neuron into five sub-fields (See Figure 3):  

• 2K-u synapses of external and local independent-excitatory input (E) 

• K-u synapses of independent-inhibitory input (I) 

• u-w synapses of common-excitatory input (Ec)  

• u synapses of common-inhibitory input (Ic)  

• w synapses of correlated-common-excitatory (Ecc) 

 

The Ic and Ec sub-fields represent common input due to the random connectivity. The 

Ecc sub-field represents input that comes from the previous pool in the chain; thus we 

also consider it as correlated input. 

To simplify the architecture without impairing its properties, we unite both the 

external and the local independent excitatory input into one sub-field: E. The E and I 
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sub-fields are different for the two output neurons, we denote the E sub-field to the 

first and second neurons by E1 and E2 respectively. Similarly, I1 and I2 are the 

independent inhibitory sub-fields for the first and second neuron, respectively. 

 

We assume that the si‘s are correlated stochastic variables that are characterized by 

their first two moments: 

• ν=is  

•  ( ) 2var sis σ=

• 22 νσρ +=⋅ s
in

ji ss , where ρin is the correlation coefficient.  

Here, the angular brackets  stand for an average over time or over different 

realizations of the si process. 

We assume no correlations among inputs that do not come from the previous pool, i.e. 

 is 0 if i, j are not members of the same pool. This assumption may not be valid in 

a full network. 

inρ

 

We calculate the membrane potential that is the result of incoming post-synaptic 

potentials in each of the five sub-fields.  

For example, the Ecc sub-field is defined as , where J is the (single) 

synaptic weight. The statistics of E

∑
∈

⋅=
w

El
lcc

cc

sJE

cc is as follows: 

νµ JwEccEcc
=≡  

( ) ( ) ( )( )[ ]22222222

2

22 11 νσρνσ +−++=⋅−+







= =

∈
∑ s

in
sji

w

El
lcc wwwJsswwJswJsJE

cc
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We assume w and K to be large; hence we can apply the central limit theorem, leading 

to:  

( )
cccc EEcc NE σµ ,~ , with νµ wJ

ccE = and ( )( )11 −+= wwJ insEcc
ρσσ . 

 

A derivation similar to that of sub-field Ecc leads to normal approximation of the other 

sub-fields: 

( )
11

,~1 EENE σµ , with ( )νµ uKJE −= 2
1

 and uKJ sE −= 2
1

σσ . 

( )
cc EEc NE σµ ,~ , with ( )νµ wuJ

cE −=  and wuJ sEc
−= σσ . 

( )
11

,~1 IINI σµ , with ( )νµ uKgJI −−=
1

and uKgJ sI −= σσ
1

 

( )
cc IIc NI σµ ,~ , with νµ gJu

cI −=  and ugJ sIc
σσ =  

 

Note that we assumed here that the inputs that do not come from the previous pool are 

uncorrelated, i.e. . Also note that 2ν>=< ji ss
21 EE µµ = , 

21 II µµ = and that 
21 EE σσ = , 

21 II σσ =  

Let h1, the input field of the first neuron, be the sum of the five uncorrelated, normally 

distributed sub fields of the first neuron: h1 = E1 + Ec + Ecc + I1 + Ic.  

The statistics of h are as follows:  

cccc IIEEEcccch IIEEEh µµµµµµ ++++=++++=≡
1111  

( ) 22222222
11 hIIEEEcccc cccc

IIEEEh µσσσσσ +++++>=++++>=<<  

Thus, ( ) ( )[ ]in
sIIEEEh wwKgJ

cccc
ρσσσσσσσ 12 222222222

11
−++=++++= . 

Similarly, we define h2 = E2 + Ec + Ecc + I2 + Ic, where E2 and I2 are the respective 

sub-fields of the second neuron.  
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Whereas 12 hh =  and 2
1

2
2 hh = , the covariance of the two fields depends on 

their common input:  

( )( )
2222

221121

)(
11 cccccccc IIEEEIEE

cccccccc IIEEEIIEEEhh

µµµµµσσσ +++++++

=++++++++=⋅
 

 

The correlation coefficient is: 

22222

222

2

2
21

11 cccc

cccc

IIEEE

IEE

h

hh hh
σσσσσ

σσσ
σ

µ
ρ

++++

++
=

−⋅
≡  

Finally, we get: 

(9) ( ) ( )
( ) ( ) in

in
h

wwKg
wwug

ρ
ρρ

12
11

2

2

−++
−++

=  

 

The expected number of common inputs to pair of neurons in a pool, which is not 

from the pre-pool, is ( ) ( )
N
w

K
w

K
wN
wKwK

−
−

=
−
−

−
1
1 2

ε . Taking the leading order in K, we 

set 

(10) u= εK 

Substituting Eq.  (10) in Eq.  (9) and using the approximation ( ) 21 www ≅− , we get Eq. 

 (3). 

 

Correlation between two neurons 

Clearly, the correlation between two neurons (ρout) is a function of the correlation 

between their fields (ρh). In general, however, this function is highly dependent on the 

neuronal model in use.  
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It is hard to derive an analytical expression of this dependency for non-linear models. 

Therefore, we assume that the mean membrane potential, or the mean of the local 

field, is rarely below zero: 

(11) hh σµ 2> .  

Thus , which allows us to approximate Eq.  (7) with: ( )[ ] 023.00 <<thP i

(12) ri(t)  h≅ i(t) 

This approximation allows us to equate the correlation between the neurons with the 

correlation between the fields, leading to: 

(13) ρout(ρh) = ρh  
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