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Structures of composite spin operators are analyzed which appear in models of neural networks of
the type which Amit et al. have recently investigated. A binary basis of size N =2¥ is introduced
to study a problem of N quantum-mechanical spin operators. The [Z(2)]* group structure of the
binary basis allows for many decompositions of the [SU(2)]" spin algebra. These become useful in
studying and solving generalized frustrated Heisenberg as well as Ising models. Using these tech-
niques for quantum-mechanical generalized spin operators, we derive an explicit representation of
the partition function of classical statistical-mechanics models, in terms of a series summation over

components of collective spin variables.

I. INTRODUCTION

Amit et al.! have recently investigated the properties of
frustrated spin-glass models defined by the Hamiltonian

H=-3J;S's’, (LY
Lj

where S° are classical spin variables at N sites i, and Jij
are couplings between any two of them chosen according
to

J,j=-1" i §i“§j#' (1.2)
N 2

The elements of the p vectors £ are chosen randomly to be
1 or —1. In the thermodynamic limit the ground state of
the free energy at low temperature has 2p minima with
spin expectation values that are proportional to one of
these p vectors. The binary components of the vectors £
can be viewed as representing some information which
can be retrieved from the structure of the corresponding
state with minimal free energy. In this sense, these vec-
tors form an input memory of the system. The system de-
fined by (1.1) is a generalization of a dynamical model for
neural networks that has been proposed by Hopfield.?

We are going to investigate structures in which the
variables S are replaced by quantum-mechanical spin
operators obeying the commutation relations

[S.',Sg1=i€.p,8YS," (1.3)
where €,p, is the completely antisymmetric rank-3 Levi-
Civita tensor and 8" is the Kronecker delta function. We
will limit ourselves to binary £ vectors which have an
equal number of positive and negative entries. In Sec. II
we build a basis of such vectors and investigate its struc-
ture. This binary basis is used in Sec. III to construct col-
lective spin operators. Using the properties of the binary
basis, we obtain a simple group-theoretical spin structure
which, for certain Hamiltonian systems, allows us to
characterize completely the spectrum. Such a system is
the frustrated Heisenberg model discussed in Sec. III. We
show in Sec. IV how to use the insight gained by this ap-
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proach in analyzing classical statistical-mechanics models
like (1.1). We express the partition function in a closed
form in terms of series of a finite number of variables and
display the results of numerical evaluations. Section V is
devoted to a discussion of our results.

II. THE BINARY BASIS

We are interested in constructing a basis for an N-
dimensional vector space out of a set of the binary vectors
&. All these vectors have N /2 entries of +1 and N /2 en-
tries of —1 and should be orthogonal to each other. This
can be achieved if we limit ourselves to the particular case
in which the dimension of the system is a power of two:

N=2M (2.1)

In this case one can construct a complete basis by per-
forming M outer products of the two two-dimensional
vectors [1] and [_}]. This basis will contain one vector
with entries of + 1 only, which we call the unit vector al-
though its norm is N, and N —1 vectors which have an
equal number of +1 and —1 entries and are orthogonal
to one another.

As a particular example let us look at the case N =38.
The N eigenvectors are given in Table I. Clearly there
are, in general, N!/(N /2)? vectors with an equal number
of positive and negative entries of module 1. All of them
can be viewed as permutations carried out on the entries
of one of them, e.g., vector a in Table I. There are, there-
fore, many different bases one can construct, but they are
all equivalent to the basis we chose.

The binary vectors have an intriguing algebraic struc-
ture. This becomes evident by defining a multiplication
procedure in which the vectors multiply each other com-
ponent by component,

axb=c<s£%€5=¢°. 2.2)
The fact that every two vectors in our binary basis pro-
duce, under this multiplication, a third vector which be-
longs to this basis follows from our construction: Every
binary vector is an outer product of the two basic two-
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TABLE I. The binary basis for N =8.

e a b c

d f g h

1 1
1

—1 -1
1 -1 -1
—1
-1 1 —1
-1 -1 1
—1 —1 1

p—
—

O Y
—
—

1 1 1 1
-1 -1 -1 —1
1 1 —1 -1
-1 —1 1 1
1 -1 1 —1
-1 1 -1 1
1 —1 -1 1
-1 1 1 —1

dimensional vectors, taken in a certain order. In multiply-
ing two such outer products one has to get a third one
since, under this multiplication, the elementary two-
dimensional vectors reproduce themselves. Moreover,
since the M =1 elementary system displays a Z(2) sym-
metry under this product, it follows that our binary basis
has a group structure of [ Z (2)]™.

It is interesting to note that under this multiplication
procedure one obtains abelian cycles of order 3 or less.
Thus one finds that the unit vector e, which obviously
obeys exe =e and e*u=p is also given by the square of
each element u*u=e. e and any u therefore constitute a
2-cycle. Every two other elements are members of a 3-
cycle:

axb=c, bxc=a, cxa=>b. (2.3)

In the example of Table I we find seven such 3-cycles:
abc, ahg, adf, bdg, bfh, chd, cgf. For general N the
number of 3-cycles in a given basis is (N —1)(N —2)/6.

It follows from the multiplication procedure that we
can construct a basis by starting with M binary vectors
which are orthogonal to one another as well as to all their
products. Let us call such a set of binary vectors a prime
set. In the example of Table I, one can use the vectors a,
b, and d as the prime set. The prime set together with all
its products forms the basis. Using any prime set of
binary vectors, one can construct the same basis or an
equivalent one.

Given a basis of vectors £ of order N one can con-
struct a basis of vectors A* of order 2N by a simple Z(2)
outer product:

AF=E#, Aignt=—E# i=12,...,N
2.4)

AMPTN=g# N NPTV =EH u=12,...,N.

Conversely one may identify in any basis B of vectors &
of order N subsets of vectors {* of order N /2 which al-
low for such a construction for some order of the indices.
This leads to a division of the basis B into two halves, B+
and B, which have the properties of even and odd pari-
ty, respectively, in the sense that if the vector a belongs to
the sector with parity 7, then a *b belongs to the sector
with parity 7,7,. Examples of such divisions in the case
N =8 of Table I are

B+=(€,C,f,g), B~=(0,b,d,h) ’
Bt =(e,b,d,g), B~ =la,c,f,h).

There are seven such divisions that one can construct
since Bt has to be a basis of order four and, therefore,
contain one of the seven possible 3-cycles. Prime sets can
never belong to a half-basis with positive parity. In fact,
every prime set determines a well specified division of the
basis by assigning all odd multiples of the prime set to
B~ and all even multiples to B ™.

In summary let us note that we encounter three dif-
ferent scales as N becomes large. One is M =log,N, the
order of the relevant group for our binary basis and the
size of a prime set. The next is N, The size of our basis.
Finally, we find that the number of possible binary vec-
tors £ is still much larger than that, it is of order 2¥/V'N .
This leaves a large choice for the binary basis of the vec-
tor space of spin sites.

III. GENERALIZED SPIN OPERATORS
AND COLLECTIVE SPIN VARIABLES

Using a Hamiltonian with a structure of the type of Eq.
(1.1) we have to study operators which are specific com-
binations of the spins on the different sites

SE= SEH . 3.1)
i

We will refer to the operators S* as generalized spin
operators. Clearly they cannot be regular spins since they
obey a different algebra. Their commutation relations are

[S2% S 1 =i€ap,S,°*? . 3.2)

This result follows by combining the commutation rela-
tions of the N independent spin variables, Eq. (1.3), with
the multiplication property (2.2) of the vectors of the
binary basis. The lower index displays the familiar SU(2)
algebra while the upper index reflects the group multipli-
cation property of the vectors £.

Since the generalized spin operators S* are just linear
superpositions of the S’ it is clear that this new algebraic
structure closes on the [SU(2)]" algebra of the original N
independent spin operators S°. This observation, coupled
with the simple cyclic multiplication of the upper index,
allows us to draw interesting conclusions. It enables us to
locate many subalgebras of the form [SU(2)]", which can
be decomposed into combinations of collective spin vari-
ables S’. The latter are just straightforward sums of sub-
sets of the original spins S’. Thus, if we are given a prob-
lem which is defined in terms of spin operators built on p
vectors, which belong to a binary basis, then there exists
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some m <p such that the p vectors close on a [Z(2)]™
group. Correspondingly, the p generalized spin operators
S* close on an algebra of [SU(2)]” where n =2™, and the
whole problem can be solved in terms of n independent
collective spins S”.

Let us go through several examples by starting with the
trivial observation that S° (where e is the unit element of
the binary basis) is an SU(2) generator. In fact this opera-
tor is just the total spin of the N-dimensional system. If
the original spins S’ carry spin +, S¢ will have a spec-
trum of all spins ranging from O to N /2. Next note that
S¢ together with any other generalized spin operator S*°
close on the algebra of SU(2) XSU(2). The two indepen-
dent collective spin operators are given by

S+8° §-— S¢-8°
A
Their spectra will range from 0 to N /4. Starting with
any two elements a and b it is clear they close on an alge-
bra by adding their product ¢ =a *b and the unit element

e. This way one obtains the algebra of [SU(2)]* with each
collective spin ranging from O to N /8,

S S°48°48b+5° _ Se4S°-Sb_5§°

St= (3.3)

+ —
4  §TT=T
(3.4)
— Se——Sa—{—Sb—Sc _ Se_sa_sb+sc
O e R e

These collective spins are guaranteed to obey the regular
spin algebra and they are, therefore, simple sums of N /4
elementary spins S’. The generalization to larger systems
is self-evident. It follows the same lines of the Z(2)
structure that we used for constructing the binary basis.
Repeating this procedure by doubling the size of the sys-
tem each time through the addition of generalized spin
operators, one ends up inevitably with the original N
spin-% operators.

As an application of this reasoning let us analyze the
structure of a frustrated Heisenberg model defined by the
Hamiltonian

HFH =C 2 EJ,-]-SaiSaj (3.5)
ij a
with a coupling matrix defined by a set of p binary vec-
tors according to Eq. (1.2). Starting with the simple case
of a single binary vector &%, i.e., p =1, we find

_fygaga_C g+ _g-)2
H_N§a‘,sas,, LSS (3.6)

Thus we end up with the problem of coupling two collec-
tive spin structures of our system. The result has a spec-
trum which is simple to construct. In the ferromagnetic
case, where c¢ is negative, the ground state is unique. It
corresponds to both spins having their highest value (i.e.,
N /4), while being coupled together to form a total spin-0
state. This follows from rewriting H as

H:%[Z(S‘“)2+2(S")2——(S++S_)2]

[2(S* )Y +2(S ) —Som?’] - (3.7)

£
N
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In the antiferromagnetic case of positive ¢ we find many
possible ground states, corresponding to all possible ways
of constructing S*=S"=0 out of the N/2 spin-+
operators that each one contains.

The structure obtained in Eq. (3.7) is characteristic of
the case p =n —1, i.e., when one uses all the binary vec-
tors which form (together with the unit vector) a basis of
size n. This follows from the identity

n n
S StSt=n 3 S'S’. (3.8)
p=1 I=1

The sum on the left includes all the generalized spin
operators corresponding to the basis. By moving the unit
element (i.e., S;y)) to the right, one finds a structure as
seen in Eq. (3.7).

It is clear how to proceed with the analysis for arbitrary
values of p. For any given p the Hamiltonian is a func-
tion of scalar products of collective spin operators whose
number is n =2™ where m <p. The equality sign is ob-
tained if the binary vectors form a prime set. The spec-
trum of this model can be completely classified within an
algebra of [SU(2)]". This will hold also for more compli-
cated Heisenberg models in which the coupling matrix is
given by

‘Iij:l i wyéi"gj"‘ . (3.9)
N#=1

Such a model depends again on n collective spin variables,
but the different weights w, introduce a structure in the
spectrum which prefers certain alignments of the spins
over others which were equally probable in the more sym-
metric case of equal weights. A simple example is the
case p =2. With general weights we find

NH =©,5°S°+w,8°S®
=(014+ o) [(STT =S~ )2 +(S§+~ -5~ +)%]

+2o@—@))(STT S~ )(ST~ =S~ ). (3.10)
Clearly, this system has the most symmetric structure
when the weights are equal. In fact, in this case, the
Hamiltonian reduces to a direct sum of two Hamiltonians
which have the structure of the p =1 problem, Eq. (3.6).
Let us close this section with an elaboration of the last
remark, by asking: Under what conditions does the Ham-
iltonian reduce into a sum of p =1 Hamiltonians? It is
easy to see that this does not recur for p =3 but can occur
for p =4, depending on which set of binary vectors is
used. In fact, it occurs if one uses half the n =8 basis
with a negative parity (e.g., the elements a, b, d, and h of
Table I). To prove that this is a general result let us note
that for a half-basis with negative parity one can choose
€i=§i’ §i+"/2=—§,', i=1,2,-..,n/2 (3.11)
and, therefore, one can express the corresponding general-
ized spin operators as
n/2 . .
St= &ML'—KY)

i=1

(3.12)
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where L and K are two sets of n /2 independent spins. It
follows then from the identity (3.8) that a Hamiltonian
which depends on the sum of all these S¥S* will be
decomposable into p =1 parts, each corresponding to a
single combination of (L —K)?2.

IV. THE CLASSICAL PARTITION FUNCTION

We will make use of the collective spin operators that
were developed in Sec. III to gain insight into the struc-
ture of the partition function of the classical model de-
fined by Eq. (1.1). For this purpose let us write the parti-
tion function as a quantum-mechanical expectation value

Z=2VZ, Z=(x|exp(—BH)|x) , 4.1)
where we choose the Hamiltonian

H=-3J;S,'s,/ 4.2)
ij

and the state

|x)= [[1 =) 4.3)

Since an eigenstate of S, has equal contributions from
both components of S, it follows that Eq. (4.1) is indeed
equal to the partition function of the statistical mechanics
defined by Eq. (1.1).

Regarding the transfer from classical to quantum
mechanics as the replacement of S’ by S,, one may
wonder whether the formalism of Sec. III is relevant at all
to this problem since all the S, operators commute with
one another anyway. Since, however, the state (4.3) is de-
fined in terms of S,, the formalism becomes relevant and
the power of the spin algebra comes into play. We know
that the problem can be rewritten in terms of n =2" col-
lective spin variables. Let us denote these variables by S’.
Since the state (4.3) has all S,‘ aligned it follows that the
same state, when described in terms of the S’, will turn
out to be composed of states with maximal spins which
are maximally polarized along the x direction:

=TI s/~ 5'=0), 0= N e

2m+l

Hence the partition function depends only on collective
spins which attain their maximal values. To rewrite this
function as an algebraic series we have to project the
states of Eq. (4.4) onto their polarizations along the z axis,

2
|S:=0,8=0)= 3 ¢,|5.=¢,S=0) . (4.5)
=-0

The coefficients ¢, are obtained from well-known rep-

resentations of the rotation group and are equal to
dyo(m/2),

02=

1 2Q)'
B (4.6)
222 (Q —qQ +g)!

This distribution peaks at ¢ =0 and decreases rapidly as
function of gq. An example for Q =32 is displayed in Fig.
1. At low values of B (high temperatures) this is the im-
portant factor in the partition function, hence the low
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FIG. 1. The distribution of the coefficients cq2 as a function
of g 20 for the case Q =32.

values of g will be populated. For large B the situation
will change, since the lowest energy states of our Hamil-
tonian correspond to maximal (either positive or negative)
g values. Amit et al.' have shown that in the thermo-
dynamic limit there exists a phase transition between
these two distinct regions of temperature.

As an example of a numerical evaluation of our repre-
sentation of the partition function let us investigate the
simplest case p =1. The Hamiltonian can be written as

H=— 25,57~ 2(5,% =5, 7, @)

where S* and S~ are collective spin operators with a
range up to Q =N /4. We have introduced an explicit
factor of 2 in the coupling in order to obtain the same
normalization as Amit et al.,' taking into account the fact
that the elementary spins of our problem have value 5.
The partition function can then be written in the follow-
ing explicit form:

B +_ )2
2Qq q)]. (4.8)

We have evaluated this expression for different choices
of Q. The values of the free energy and specific heat (de-
fined through the first and second derivatives of InZ with
respect to 3) for Q =8, 16, and 32 are displayed in Fig. 2.
The behavior of the specific heat shows the buildup of a
phase transition. The peak moves slowly with Q to the
correct location! B.=1. At large B we observe that the
free energy tends to the expected value of — N /2= —-2Q,
which is obtained when all spins are aligned in the direc-
tion of the binary vector £°.

Since the coefficients cq2 are invariant under the change
g<>—q we find that the partition function Z, of Eq. (4.8)

2 cq+c _exp
9%~
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FIG. 2. Results derived from Z, for the cases Q =38,16,32.
The curves describing the specific heat display a peak above
B=1 which increases in magnitude and shifts towards . =1 as
Q increases. The free-energy curves display two distinct re-
gions. At low S the free energies of the different Q values are
equal to one another, while for B> 1 they are proportional to Q.
At B=2 they are very close to their asymptotic values. In this
figure we plot the negative of the free energy.

stays unchanged under the reversal of the sign of ¢~ in
the exponent of this expression. This means that the
p =1 statistical problem is the same if we use the unit
vector as input instead of a binary vector. This is so be-
cause any p =1 problem can be recast into this form by
the Mattis® transformation S°—£;S' (no summation im-
plied). Note that this does not hold for the quantum-
mechanical problems discussed in Sec. IIIL.

The analysis can be easily generalized to higher p values
although its evaluation can become exceedingly difficult.
The case p =2 leads to a summation over components of
four collective spins:

5 2 2 2 2
Z=al§ch++cq+_cq_+cq__

2
X exp FB[(q”+q+‘—q“+—q“)2

+(gtt—gT+q T —¢ )]

(4.9)

This problem is decomposable into a product of two parti-
tion functions of the type (4.8). This is the same
phenomenon that we discussed at the end of Sec. III:
Whenever the p input vectors form a half-basis of nega-
tive parity the partition function turns into a product of p
partition functions Z,. By using the Mattis transforma-
tion we can effectively change the parity of any half-basis.
Hence we may conclude that the decomposition

Z,=Z7 (4.10)
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will occur for all the cases in which the set of p vectors
forms a half-basis. This includes, of course, the cases in
which the p vectors form a full basis, because every basis
can be viewed as a half-basis of positive parity in a struc-
ture which is twice the size.

The Mattis transformation can be used to reduce the
size of the relevant spin algebra by a factor of 2. Starting
with any set of p input binary vectors (e.g., the prime set
abd of Table I, which defines a p=m =3 or n =8 sys-
tem) one can use one of them to redefine the classical
spins via a Mattis transformation ending up with a set
which includes the unit element and p —1 binary vectors
(e.g., e=a*a, c =ax*b, f =ax*d in this example, which
fits into an n =4 system). Hence a problem defined by p
binary vectors can be described in a basis of order n =2™
where m <p — 1.

Our representation of the partition function as a
quantum-mechanical matrix element allows for a very
suggestive decomposition into sectors of configuration
space, which are quantum-mechanical states. Defining a
positive and negative component of the collective spin I in
the following (somewhat arbitrary) fashion:

|I+>=ECQISZI=(]>, |I“‘>=2cq|sz]=q) ’
q20 q<0

(4.1

we can decompose the state | x ) of Eq. (4.1),

|x)=[II+)+[1—-)), 4.12)
I=1

into a coherent sum of states which have one component
for each I. Correspondingly, the partition function can be
written as the sum of 2" terms, coming from orthogonal
states defined by specific general directions of each collec-
tive spin. In a problem defined by p input vectors which
belong to a prime set there will be 2p “most-favored”
states which have the lowest free energy in the low-
temperature region. These are the ones in which the Ith
component is chosen according to the sign implied by one
of the p input vectors. The factor of 2 is present since H
is bilinear in the S¥, leading to a twofold degeneracy: a
most-favored state is transformed into another most-
favored state by reversing the sign of all components. Us-
ing the n —p binary vectors which belong to the basis but
are not included in the input to H, we can construct
2(n —p) unfavored states which will have the highest free
energy in the low-temperature region. In between we find
the rest of the 2" states with various degrees of favoritism.
We encounter states which differ from the most-favored p
vectors by one sign, then by two signs, and so on. In a
large-p system their free energy will be a large fraction of
the lowest one, decreasing in magnitude the farther they
depart form any one of the most-favored p binary vectors.
These different states are semistable in the low-
temperature regime. In order to decay into one of the
minima one has to rotate a collective spin, which may re-
quire a long series of Monte-Carlo runs in a numerical
simulation.

A simple example of the different states can be given in
the p =2 problem described by the partition function of
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Eq. (4.9). The relevant basis is n =4. The collective spins
I are designated here by ++,+—,—+,——. The
most-favored states have the I components chosen as
+,+,—,— or +,—,+,— or their reversals. The un-
favored states are defined by the choices +,+,+,+ and
+,—,—,+ or their reversals. In this problem we are
then left with states which have I components with three
equal signs. They will all correspond to an 1nterrned1ary
situation. Since this Z, problem factors into Z ;> we can
identify each such intermediate state as having a favored
component in one Z; and an unfavored component in the
other 71 .

V. DISCUSSION

Simple spin systems are favorite models in statistical
mechanics, simulating the structures of many physical
systems. The classical Ising model and the quantum-
mechanical Heisenberg model are well-known textbook
examples. Being based on nearest-neighbor interactions
they represent very different structures from the ones that
we have studied here. In a one-dimensional system, where

Jij=8ij1+8;;_1, (5.1)

with i =1,2, ..., N ordered cyclicly, it is advantageous to
construct the spin-wave operators

Sk)=3 e*iss, (5.2)
j

which obey the algebra
[Sa(k),Sg(p)l=i€.p,Sy(k +p) .

The momenta k take on discrete values appropriate to the
lattice. As N increases they become dense and the algebra
(5.3) turns into a Kac-Moody algebra. The Hamiltonian
can be rewritten in a bilinear form in terms of the spin
waves, hence they determine the structure of the spec-
trum. The excitations are labeled by momenta, reflecting
the translation invariance of these models.

The models that we discussed here belong to another
extreme. They represent interactions of all spins with one
another. Therefore there is no apparent space structure
involved. Moreover, the interaction is parametrized in a
binary basis. This led us to consider the generalized spin
operators

S“=2_§i“5i

(5.3)

(5.4)

instead of the Fourier transforms of the nearest-neighbor
interaction. The use of binary bases as a complete set of
functions is well known in some computer-science and
electrical-engineering areas and goes under the name of
Walsh functions.* This is the right tool for handling in-
formation bits and it seems therefore appropriate to re-
place in this problem the Fourier transform with Walsh
transforms.

The algebra of the generalized spin operators
[SoS g1 =i€ap, S, ** (5.5)

is quite different from that of the spin waves, Eq. (5.3).
The most important difference is its decomposition into
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many subalgebras. Every three operators that participate
in the relation (5.5) constitute, together with S¢, an alge-
bra of [SU(2)]*. This simplifies considerably the analysis
of the models that we discussed.

A general symmetric coupling matrix J;; can be ex-
pressed as such in the configuration space basis, labeled
by the site index i, or in the binary basis

J,-j=2a)#v§,-“§j" ’ (56)
“,v

where o is a real symmetric matrix. The generalized spin
operators come into play when o is a diagonal matrix.
This is the case discussed in Secs. III and IV. We have
mostly looked into the even more restricted situation in
which the diagonal matrix o had two degenerate eigen-
values: most diagonal elements vanished, and the few
nonzero ones were equal to one another. In Sec. III we
have discussed the resulting Heisenberg models and
demonstrated the usefulness of the new generalized spin
algebra. By rewriting the generalized spin operators in
terms of collective spin variables we have, in fact, diago-
nalized these quantum-mechanical models. The same ap-
proach was applied in Sec. IV to models in statistical
mechanics by employing a representation of the classical
partition function as a quantum-mechanical expectation
value.

The p =1 model was proposed and analyzed by
Mattis.> Using our techniques we were able to give an ex-
plicit representation of the p =1 problem in terms of a
series of two-integer variables. Moreover, we have seen
that there are many other models, namely those where the
p binary vectors are Mattis transformations of a basis,
which reduce into products of the p =1 problem.

Van Hemmen® discussed a particular p =3 problem
whose analog, in our language, involves the vectors e, a,
and b. Using a different coupling for SS¢ than for the
other generalized spin operators, he obtains a rich phase
structure for this system. This result relies on the average
over the random variables in the thermodynamic limit,
but we may expect a finite system to display analogous
behavior. Provost and Vallee® have generalized Van
Hemmen’s model into a general p structure, analyzing it
with both mean-field and replica methods. Our new tech-
nique may allow numerical and algebraic investigations of
such models using the explicit forms for the partition
function.

The general finite-p problem was discussed by Amit
et al.! in the N— o limit. Their input vectors were gen-
erated randomly. This allowed them to derive physical
conclusions in the thermodynamic limit. Our input is
more rigid since we employ only vectors which belong to
a binary basis. When the randomly generated input vec-
tors are expressed in an appropriate binary basis,  should
turn out to have large diagonal and small nondiagonal
matrix elements. In such a situation our formalism
should still be applicable, but perturbative corrections
have to be invoked.
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