
LETTER Communicated by Barak Pearlmutter

Probability Density Estimation Using Entropy Maximization

Gad Miller
David Horn
School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel

We propose a method for estimating probability density functions and
conditional density functions by training on data produced by such dis-
tributions. The algorithm employs new stochastic variables that amount
to coding of the input, using a principle of entropy maximization. It is
shown to be closely related to the maximum likelihood approach. The
encoding step of the algorithm provides an estimate of the probability
distribution. The decoding step serves as a generative mode, producing
an ensemble of data with the desired distribution. The algorithm is read-
ily implemented by neural networks, using stochastic gradient ascent to
achieve entropy maximization.

1 Introduction

The problem of constructing a probability density function p(x) from a given
finite number of data points is well known. There exist many approaches
in the statistical literature (see Bishop, 1995, for a short review), which are
usually divided into parametric and nonparametric methods, as well as
mixtures of the two. The parametric approach starts from an assumed fam-
ily of distributions and tries to find the best fit. The simplest nonparametric
approach is binning the data and smoothing the resulting histogram. Ex-
amples of mixture methods are maximum likelihood (ML) and expectation-
maximization (EM) algorithms. Neural networks can be naturally included
in many of these approaches.

The new approach that we propose here is to employ entropy maximiza-
tion. In this approach we make use of ideas that have recently been applied
successfully to blind separation and blind deconvolution problems (Bell &
Sejnowski, 1995). While the latter are usually stated within the framework of
information maximization, they naturally reduce to entropy maximization
(Nadal & Parga, 1994), as pointed out by Roth and Baram (1996), who have
developed and employed this method for probability estimation. As will be
explained in the next section, this involves, at some stage, the construction
of a new, uniformly distributed variable. In our algorithm, this construction
will correspond to an encoding step, in which a neural network is trained
with the data so as to produce a uniform output. In this process, it creates a
representation of the probability distribution that we look for. A second step

Neural Computation 10, 1925–1938 (1998) c© 1998 Massachusetts Institute of Technology

1926 Gad Miller and David Horn

of the algorithm can be viewed as a decoding step, in which a uniformly
distributed input is fed to another network, which is also trained by the
original examples, and serves as a generative model; it produces an output
distributed according to the probability density function of the data.

The general structure of our algorithm is explained in the next section
using the problem of conditional density function estimation. Here the data
are presented in pairs (x, y), and the problem is to find p(y|x). Probability
density estimation can be viewed as a special simplified case of conditional
density function estimation. Numerical examples of probability distribu-
tions serve to demonstrate our method. Section 3 discusses the relation of
the maximum entropy (ME) approach to the well-known ML one. This is
followed in the next two sections by further applications of the ME method.
In section 4 we apply it to the case of stochastic variables with deterministic
functional relations, and in section 5 we discuss the possible use of ME as a
tool for Monte Carlo generation of artificial data.

2 Entropy Maximization

In this section we demonstrate our method on the problem of estimation of
conditional density functions. Data are given as samples of pairs of variables
(x, y) that are generated by some distribution function p(x, y), and we wish
to determine the functional form of p(y|x). We propose to solve this problem
by constructing a network with inputs (x, y) and an output v that is bounded
in the domain 0 ≤ v(x, y) ≤ 1 and is assumed to be one-to-one with respect to
y. Moreover, our aim will be to have this new stochastic variable uniformly
distributed, V = U(0, 1), and independent of X. As we will show, this can
be achieved by requiring entropy maximization. We refer to this stage of
our algorithm as the encoding step, replacing the variable y by v.

Let us define the joint entropy of the output variables:

H(X,V) = −
∫

p(x, v) ln p(x, v)dxdv. (2.1)

This can be rewritten in terms of the input variables as

H(X,V) = −
∫

p(x, y) ln
p(x, y)

J
dxdy

= −
∫

p(x, y) ln p(x, y)dxdy+
∫

p(x, y) ln Jdxdy

= H(X,Y)+ E[ln J], (2.2)

where J is the absolute value of the Jacobian,

J =
∣∣∣∣∂(x, v)
∂(x, y)

∣∣∣∣ = ∣∣∣∣∂v
∂y

∣∣∣∣ . (2.3)

Probability Density Estimation 1927

The principle of our algorithm is entropy maximization; we look for a choice
of v(x, y) such that H(X,V) is maximized. The entropy can be decomposed
into

H(X,V) = H(X)+H(V)− I(X;V), (2.4)

where I(X;V) is the mutual information between X and V. H(V) reaches its
upper bound, H(V) = 0, for a uniformly distributed v ∼ U(0, 1) (Cover &
Thomas, 1991). I(X;V) is a nonnegative quantity, lower bounded by 0 for
the case where X and V are independent. It remains to be shown that there
exists a uniformly distributed V that is independent of X. To derive that
function, we note that p(x, v) is related to p(y|x) through

p(x, v) = p(x, y)
J
= p(y|x)p(x)

J
. (2.5)

If V is to satisfy the uniformity and independence conditions,

p(x, v) = p(x)p(v) = p(x) (2.6)

holds. Comparing equations 2.5 and 2.6, we obtain J = p(y|x), or,

∂v
∂y
(x, y) = ±p(y|x). (2.7)

Explicit solutions of v are

v(x, y) =

either
∫ y
−∞ p(y′|x)dy′

or
∫∞

y p(y′|x)dy′.
(2.8)

In our applications we try to realize the solution with a network with
parameters α that maximize the entropy H(X,V). We learn from equation
2.2 that this is equivalent to maximizing E[ln J]. Using the stochastic gradient
ascent method, this can be done through a learning algorithm

1α ∝ ∂ ln J
∂α
= J−1 ∂ J

∂α
=
(
∂v
∂y

)−1
∂2v
∂y∂α

. (2.9)

When training is completed, we can use its result to estimate the desired
conditional distribution function by evaluating∣∣∣∣∂v

∂y
(x, y)

∣∣∣∣ = p(y|x), (2.10)

1928 Gad Miller and David Horn

which is the first step of our task. In other words, by performing the encoding
step, which is the construction of the uniformly distributed variable V, we
have solved the problem of conditional distribution function estimation. A
potential pitfall that deserves attention is the one-to-one assumption of the
function v, that is, J 6= 0 over the domain of y. This, however, seems quite
natural given that two conditions hold: the domain of nonzero probability
is connected, and J 6= 0 over this domain for the initial estimate of v(t = 0).
If gradient ascent is performed sufficiently slowly, in a “quasi-static” limit,
such that equation 2.2 always holds, it follows from the last integral in
equation 2.2 that v remains one-to-one. If it does not, the integral diverges
to −∞, contradicting the fact that it should monotonically increase when
climbing along the gradient.

Of course, the above discussion holds only in the limit where the number
of samples approaches infinity. For any finite sample number, the discrete
analog of equation 2.2, developed in the next section in the form of equation
3.4, may increase even as v ceases to be one-to-one, regardless of the step
size. In addition, the optimization space may be very complex so as to result
in the finding of a local maximum, potentially entailing a poor estimation
of the density function. We have not yet answered these questions, which
concern the practicality of the ME method.

Next we turn to the decoding step, or the generative step of our algo-
rithm. We wish to construct a network that can generate events distributed
according to p(y|x) for a given x. Using the output of the encoding step,
(x, y)→ (x, v), we train a second network to reproduce the original inputs
(x, v) → (x, y). The training of this secondary net follows standard super-
vised learning. Once the second network is trained on the data set, it can
be used in a generative mode: given a value of x, one draws randomly a
value of v that is uniformly distributed v ∼ U(0, 1), and uses it as an input
to this network. The output y will be appropriately distributed according to
p(y|x). That this can be done follows from the fact that the solution v(x, y)
to the encoding phase is a monotonic function of y. To be specific, we may
stick to the monotonically increasing solution. It is then invertible; a solution
y = g(x, v) is well defined.

Figure 1 presents the general schematic structure of the two steps of our
method. Using real variables (x, y), one can invoke naturally the gradient
ascent algorithm for learning 0 ≤ v(x, y) ≤ 1 on a feedforward neural
network. The decoding step may require first performing an unsquashing
transformation on v, before employing it as an input, together with x, in a
standard backpropagation or any other supervised learning procedure.

The same kind of formalism can be applied to the more complicated
problem of higher-dimensional probability distributions, when x and y are
replaced by vector variables of arbitrary dimensions. The general solution
to the estimation problem of a conditional distribution function is given by

Probability Density Estimation 1929

Figure 1: A schematic representation of the encoding and decoding steps.

the relation

p(y|x) =
∣∣∣∣∂v
∂y
(x,y)

∣∣∣∣ , (2.11)

where the auxiliary vector variable v is of the same dimension as y which
may be different from that of x. The proof is outlined in appendix A. v is
uniformly distributed in a unit cube and is independent of x.

It is straightforward to apply this algorithm to the simpler case of prob-
ability density function estimation for a single variable y. In this case, the
variable x drops out from the formalism, but the logic of the encoding and
decoding steps continues to be the same. Our derivation coincides in this
case with the work of Roth and Baram (1996), but our implementation is
different, allowing for a general neural network to define the functional de-
pendence of v on y. We use this problem for an illustration of our method.
Figures 2 and 3 depict two probability distributions used to generate sam-
ples for training the encoding step of our algorithm. The estimated distribu-
tions are shown, as well as histograms that were generated from the same
samples as those used for the encoding. Figure 2 is a bimodal distribution
tested with a (small) set of 50 samples only. The samples turn out to be
asymmetrically generated, due to the small statistics. This is evident in the
histogram and reflected in the ME estimation. The network employed in
this case used two hidden units only; hence its structure is

v = σ
(∑

i
Wiσ(wiy− θi)− θ0

)
, (2.12)

with i = 1, 2. σ is the sigmoid function σ(z) = (1 + e−βz)−1. In Figure
3 we look at a triangular distribution, this time tested with 200 samples.
Correspondingly we use a more complex network, with four hidden units.

1930 Gad Miller and David Horn

Figure 2: Comparison between the ME estimate (solid line) and the histogram
of 50 samples drawn from a bimodal distribution (dotted line). The network
subserving the ME encoding step contains two hidden units.

In general, we need a network whose complexity (number of parameters)
is less than linear in the number of samples, for example, a square root of
the latter. Clearly this is independent of the complexity of the distribution
and its dimensionality.

3 Maximum Entropy versus Maximum Likelihood

It is instructive to draw a comparison between the ML method and the pro-
posed ME one. A connection may be expected in view of previous results
(Pearlmutter & Parra, 1996; MacKay, 1996; Cardoso, 1997) casting indepen-
dent component analysis into the ML formalism.

Suppose we have a set χ = {x1, x2, . . . , xM} of M statistically indepen-
dent samples of some random variable X, and that the distribution of X is
assumed to belong to some known class of distributions with probability
density functions f (x;α). Let us denote by α0 the true parameters of X,
that is, f (x;α0) = p(x). According to the ML approach, we maximize the

Probability Density Estimation 1931

Figure 3: Comparison of the ME estimate and a histogram of 200 samples drawn
from a triangular distribution. The larger sample size allows the use of a more
complex network with four hidden units.

expression:

E = p(χ |α) =
M∏

i=1

p(xi|α) =
M∏

i=1

f (xi;α). (3.1)

This is equivalent to maximizing

ln E
M
=
∑M

i=1 ln f (xi;α)
M

= Ê[ln f (x;α)], (3.2)

where Ê denotes the estimated expectancy on an ensemble of size M. In the
limit M→∞, this tends to

E[ln f (x;α)] =
∫

f (x;α0) ln f (x;α)dx. (3.3)

Since the last integral is maximal for α = α0, ML is a consistent criterion,
that is, when the number of samples approaches infinity, finding the ML

1932 Gad Miller and David Horn

solution yields the correct distribution f (x;α0). The ME algorithm can be
cast into a similar form. Starting with the auxiliary variable v, which is of
the same dimension as the input variable x that it is to encode, we redefine
our problem as searching for a one-to-one function in the family {v(x) | 0 ≤
vi(x) ≤ 1 ∀x ∈ Rn, 1 ≤ i ≤ n} that maximizes a cost function

H =
M∏

i=1

∣∣∣∣∂v
∂x
(xi;α)

∣∣∣∣ , (3.4)

which will ensure maximization of the entropy. We then seek an α0 for
whichH is maximal. As before, this is equivalent to maximizing

lnH
M
=
∑M

i=1 ln
∣∣ ∂v
∂x (xi;α)

∣∣
M

= Ê
[

ln |∂v
∂x
(x;α)|

]
, (3.5)

which, in the limit M→∞, leads to maximization of

E
[

ln |∂v
∂x
(x;α)|

]
=
∫

p(x) ln
∣∣∣∣∂v
∂x
(x;α)

∣∣∣∣ dx. (3.6)

We show in appendix B thatHmaximization is obtained when∣∣∣∣∂v
∂x

∣∣∣∣ = p(x). (3.7)

Thus we find that v that maximizes H also maximizes the entropy of the
auxiliary variable,

H(V) = H(X)+ E
[

ln
∣∣∣∣∂v
∂x

∣∣∣∣] . (3.8)

This derivation shows the relation between the ME and ML approaches:
The space of possible

∣∣ ∂v
∂x

∣∣ serves as the space of candidate functions over
which the ME algorithm is operative. These functions are positive definite
but are not necessarily properly normalized. The example of equation 2.12
can serve as an illustration. There are regimes in parameter space where
v will not reach its upper limit of 1. In other words, our parameter space
is not restricted to properly normalized functions. However, as training
proceeds,

∣∣ ∂v
∂x

∣∣ turns into an appropriate probability distribution function,
coinciding with an ML solution of the network that we employ. Hence ME
is a realization of ML.

4 Functional Dependence Among Random Variables

We expect the entropy maximization algorithm to be a useful tool in many
applications. In this section we wish to demonstrate how it can come in

Probability Density Estimation 1933

handy in solving problems where there is a known, or expected, dependence
among some of the stochastic variables. We restrict ourselves to estimation
in the sense of reproducing the desired random variable rather than finding
its density function.

We will start with the single variable case: a relation of the type Y = g(X)
between two stochastic variables. We can think of three interesting cases:

1. g is known, and samples of X are given. An estimate of Y is to be obtained.
This case is the simplest and is solved by the estimation of X, to which
one applies g(X).

2. g is known and samples of Y are given. An estimate of X is sought.
In this case we employ the encoding stage on Y as usual, thus es-
timating v(y). We then apply a second encoding step, maximizing
the entropy of v(g(w(u))), where u is drawn from the usual uniform
distribution. The entropy of v is maximal when it is uniformly dis-
tributed. The entropy of v is maximal when it is uniformly distributed.
By the way v was constructed, this means that g(w) ∼ Y from which
w(u) ∼ X.

3. Samples of both X and Y are given in the form {xi} and {yi} (as opposed to
{xi, yi}). An estimate of g is required. Again we first use the encoding step
on Y, thus determining v(y). In the second encoding step, we maxi-
mize the entropy of v(w(x)) using the samples of X. When a uniform
distribution of v(w) is attained, w ≡ g.

Things get more interesting when the functional dependence of the ran-
dom variables becomes more complicated. As an example, suppose that the
relation Y = g(X1,X2) holds between the three random variables with g
known, and also X1 and X2 are known to be independent. This can be a
model of a transmitted signal, where X1 is the signal, X2 is the noise, and Y
is the corrupted received signal. Samples of X1 and of Y are given, and the
purpose is to estimate X2.

We begin by encoding Y, thus obtaining v(y). We then construct a network
that has two inputs, x and u, and two outputs, a and b. The x input is
taken from the X1 samples and the u input is drawn uniformly. The outputs
have the functional form a = v(g(x, h(u))) and b = w(x,u), with h and w
functions realized by the network. When the entropy of (a, b) is maximized,
it is uniformly distributed. In particular, a is uniformly distributed, and by
the way v was constructed, we then have g ∼ Y, implying that h(u) ∼ X2.
Note that b was introduced here only for computational assistance; it is
much easier to maximize the entropy of (a(x,u), b(x,u)) than that of a(x,u)
alone, because of the mismatch between the number of inputs and outputs.

1934 Gad Miller and David Horn

5 Generating Artificial Data of a Given Distribution

As a further example of the use of entropy maximization, we address the
question of generating random deviates (or artificial data) for a given distri-
bution. The latter can be given in a nonnormalized fashion, as a complicated
(nonnegative) function f (x) over some domain. In that case we can proceed,
in analogy with the analysis of section 3, with defining an integral to be max-
imized:

I =
∫

f (x) ln
∣∣∣∣∂v
∂x
(x;α)

∣∣∣∣ dx. (5.1)

The maximization procedure is carried out by gradient ascent on a neural
network that implements the mapping x → v, with v turning out to be
uniformly distributed in a unit cube. In this process, the Jacobian of the
transformation takes the shape of the desired distribution. Once this en-
coding step is completed, this time through numerical evaluation of ∂I/∂α
rather than through training by data, the decoding step is developed as
before. The decoder becomes the desired generator of artificial data. This
can be viewed as an alternative to existing methods, such as the rejection
method (Press, Flannery, Teukolsky, & Vetterling, 1986). Its generality, as
well as the fact that neural networks can serve as universal approximators,
makes it a likely candidate for a new tool.

6 Discussion

The principle of maximal entropy, which leads to a uniform distribution of
the new random variables, is the cornerstone of the mathematical structure
of our model. We have seen that it may be viewed as closely related to the
maximum likelihood approach. In a simple problem, like the one depicted
in Figure 2, it is very similar to conventional realizations of ML, because
its result is close to a sum of two gaussians. This is not the case for more
complex problems. Even in the result displayed in Figure 3, the output of
the network is quite different from the sum of four gaussians, which might
be expected from the hidden layer. The reason lies in the nonlinear character
of the output node of our network, which is a squashing function producing
the bounded variable v.

We distinguished between two different steps of our model: the encod-
ing and decoding ones. The encoding step produces the desired probability
distribution, which can be read off its internal neural structure. The decod-
ing phase is useful as a generative mode, such as the “sleep” phase of the
Helmholtz machine (Dayan, Hinton, Neal, & Zemel, 1995). In our model, the
two steps are completely separated. In particular, the encoding step, which
is the analog of the “wake” phase of the Helmholtz machine, is completely
independent of the decoding one. In the Helmholtz machine, the two modes

Probability Density Estimation 1935

are coupled. This is, of course, part of the elegance of that structure, whose
motivation was the idea that the generative mode has to play an inherent
role in the brain’s capability of pattern recognition. Although in principle
one could structure the Helmholtz machine to be closer to our algorithm, in
our case the two networks performing encoding and decoding have very
different architectures that are unrelated to one another. Our generative step
is introduced only as a computational tool. It may be useful as a Monte Carlo
generator of artificial data.

The traditional approach of using neural networks in the realm of proba-
bility distributions is to endow single neurons with stochastic transfer func-
tions, as in the Boltzmann machine (Ackley, Hinton, & Sejnowski, 1985)
and the Helmholtz machine (Dayan et al., 1995). Our model is based on a
completely different point of view. Its neural network component is purely
deterministic. The probabilistic character comes from interpreting some of
the nodes, forming outputs of the encoding step and inputs of the decod-
ing step, as random variables. This type of variable (Roth & Baram, 1996)
emerges naturally in the blind separation algorithm of Bell and Sejnowski
(1995) and can be viewed as a novel element in the formation of stochastic
neural networks.

Appendix A: Entropy Maximization for Vector Variables

We prove here that the method presented in section 2 can be generalized
to x and y of vector form. First, we notice that the discussion in section 2
is immediately generalizable to a vector x simply by substituting x for x.
Its results therefore apply for the case (x, y) with x a vector and y a scalar.
In particular, this means that there exists a function v0(x, y) such that the
uniformity and independence conditions (see equation 2.6) hold whence
H(x, v0) = H(x).

Now suppose we have a vector y (and accordingly a vector v of the
same dimension, each of its components bounded between 0 and 1). By the
argument above, it follows that there exists a function v0

1(x, y1) such that

H(x, v0
1) = H(x). (A.1)

Similarly, defining x′ ≡ (x, v0
1(x, y1)), there exists a function v0

2(x
′, y2) such

that

H(x, v0
1, v0

2) = H(x′, v0
2) = H(x′) = H(x, v0

1) = H(x). (A.2)

This procedure may be iterated until finally we obtain a v0 such that

H(x,v0) = H(x). (A.3)

1936 Gad Miller and David Horn

However, as in the scalar case, the relation

H(x,v) = H(x)+H(v)− I(x,v) ≤ H(x) (A.4)

holds, with equality iff v is uniformly distributed and independent of x.
We deduce that v0 satisfies these conditions, and from now on refer as v0

to any v for which an equality in equation A.4 holds. Indeed, the twofold
degeneracy of section 2 is now inflated to at least 2n(n!)2-fold degeneracy.
However, it is not the uniqueness of v0 which is of interest to us but rather
the uniqueness of |∂v0/∂y|, as will become clear shortly.

Having the vector analog of equation 2.3, we can continue as in section
2 to obtain

p(y|x) =
∣∣∣∣∂v0

∂y
(x,y)

∣∣∣∣ . (A.5)

Using equation A.5, for any (x,y) such that p(x,y) > 0, we have∣∣∣∣∂v0

∂y
(x,y)

∣∣∣∣ = p(y|x) > 0, (A.6)

and v0(x,y) is therefore invertible in the domain of nonzero probability to
the form y0(x,v).

Finally, for a given x0 choose v ∼ Un(0, 1) and define g0(v) ≡ y0(x0,v).
For the distribution of g0 we have, using equation A.5,

p(g0) = p(v)∣∣∣ ∂g0

∂v

∣∣∣ =
∣∣∣∣ ∂v
∂g0

∣∣∣∣ = ∣∣∣∣ ∂v
∂y0 (x

0,y0)

∣∣∣∣ = p(y0|x0), (A.7)

which shows that G0 ≡ Y|X = x0.
It is evident from the above derivation that in order to achieve a uniform

independent distribution, it suffices for every output element vi to be con-
nected to x and to (v1, . . . , vi−1). This triangular formation was advocated by
Roth and Baram (1996). It has the advantage of having a smaller number of
parameters, but is also more constrained; its degeneracy is much reduced,
making the global maximum potentially harder to attain.

Appendix B: Proof of ME Consistency

We wish to prove here that the ME criterion is consistent—that is, when the
number of samples approaches infinity, the correct distribution is obtained.
As explained in section 3, its consistency relies on the following theorem:

Theorem 1. Define B = {g(x) | g(x) is one-to-one and 0 ≤ gi(x) ≤ 1 ∀x ∈
Rn, 1 ≤ i ≤ n} and let f (x) be a probability density function. If g(x) ∈ B
maximizes

∫
f (x) ln

∣∣∣ ∂g
∂x (x)

∣∣∣ dx then
∣∣∣ ∂g
∂x (x)

∣∣∣ ≡ f (x).

Probability Density Estimation 1937

Proof. Anyone who has read appendix A will not be surprised at what is
coming, since this is just a different way of stating the same thing.
Define

ĝ1(x1) ≡ FX1(x1) ≡
∫ x1

−∞
dx′1

∫ ∞
−∞

dx′2 . . .
∫ ∞
−∞

dx′n f (x′1, x′2, . . . , x′n), (A.8)

ĝ2(x1, x2) ≡ FX2|X1(x1, x2)

≡
∫ x2

−∞
dx′2

∫ ∞
−∞

dx′3 . . .
∫ ∞
−∞

dx′n f (x1, x′2, . . . , x′n)/fX1(x1),(A.9)

ĝ3(x1, x2, x3) ≡ FX3|X1,X2(x1, x2, x3), (A.10)

and so forth, where fX1(x1) is the marginal probability distribution of X1.

Then ∂ ĝi/∂xi = f (xi|x1, . . . , xi−1) and for every i < j, ∂ ĝi/∂xj = 0.
The matrix ∂ ĝi/∂xj is therefore triangular, so that ∂ĝ/∂x = ∏n

i=1 ∂ ĝi/∂xi =∏n
i=1 f (xi|x1, . . . , xi−1) = f (x). From the construction of ĝ(x), it is clear that

ĝ(x) ∈ B. This proves the attainability of the limit. To complete the proof,
note first that since g is one-to-one, ∂g/∂x can be assumed to be positive
without loss of generality. Thus, using the inequality ln x ≤ x− 1,

∫
f (x) ln

∂g
∂x

dx−
∫

f (x) ln f (x)dx =
∫

f (x) ln
∂g
∂x

f (x)
dx

≤
∫

f (x)

(
∂g
∂x

f (x)
− 1

)
dx = (A.11)

∫
∂g
∂x

dx−
∫

f (x)dx =
∫

dg−
∫

f (x)dx ≤ 1− 1 = 0, (A.12)

with equality holding iff ∂g/∂x ≡ f .

Acknowledgments

We thank H. Abramowicz, S. Ackerman, I. Meilijson, B. Pearlmutter, E.
Ruppin, and S. Solla for helpful discussions.

References

Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. (1985). A learning algorithm for
Boltzmann machines. Cog. Sci., 9, 147–169.

1938 Gad Miller and David Horn

Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to
blind separation and blind deconvolution. Neural Comp., 7, 1129–1159.

Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford: Oxford Uni-
versity Press.

Cardoso, J.-F. (1997). Infomax and maximum likelihood for source separation.
IEEE Letters on Signal Processing, 4, 112–114.

Cover, T. M., & Thomas, J. A. (1991). Elements of information theory. New York:
Wiley.

Dayan, P., Hinton, G. E., Neal, R. M., & Zemel, R. S. (1995). The Helmholtz
machine. Neural Comp., 7, 889–904.

MacKay, D. J. C. (1996). Maximum likelihood and covariant algorithms for independent
component analysis. Unpublished manuscript.

Nadal, J.-P., & Parga, N. (1994). Nonlinear neurons in the low noise limit: a
factorial code maximizes information transfer. Network, 5, 565–581.

Pearlmutter, B. A. & Parra, L. C. (1996). A context-sensitive generalization of
ICA. Int. Conf. on Neural Network Processing. Hong Kong.

Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. (1986). Numerical
recipes. Cambridge: Cambridge University Press.

Roth, Z., & Baram, Y. (1996). Multidimensional density shaping by sigmoids.
IEEE Trans. on Neural Networks, 7, 1291–1298.

Received May 8, 1997; accepted April 2, 1998.

