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Repetitive sequences are hotspots of evolution at multiple levels.
However, due to difficulties involved in their assembly and
analysis, the role of repeats in tumor evolution is poorly under-
stood. We developed a rigorous motif-based methodology to
quantify variations in the repeat content, beyond microsatellites,
in proteomes and genomes directly from proteomic and genomic
raw data. This method was applied to a wide range of tumors and
normal tissues. We identify high similarity between repeat in-
stability patterns in tumors and their patient-matched adjacent
normal tissues. Nonetheless, tumor-specific signatures both in
protein expression and in the genome strongly correlate with
cancer progression and robustly predict the tumorigenic state. In
a patient, the hierarchy of genomic repeat instability signatures
accurately reconstructs tumor evolution, with primary tumors
differentiated from metastases. We observe an inverse relation-
ship between repeat instability and point mutation load within
and across patients independent of other somatic aberrations.
Thus, repeat instability is a distinct, transient, and compensatory
adaptive mechanism in tumor evolution and a potential signal for
early detection.
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Cancer clonal evolution (1, 2) is marked by a wide range of
genomic instabilities and somatic aberrations, which lead to

intratumor heterogeneity and eventually enable tumor cells to
proliferate and metastasize (3–6). These aberrations include
substantial complex structural variations on every scale as ex-
emplified by the prevalence of aneuploidy (7) and chromosomal
instability (8, 9), hypermutation (10, 11) and microsatellite in-
stability (MSI) (12–14), and complex short insertions and deletions
(15) as well as large complex genomic rearrangements, such as
chromothripsis (16) and chromoplexy (17). Elucidating the re-
lationship between different mutational classes is critical for in-
ferring the exact clonal composition and phylogeny of tumors (18–20)
and subsequently, determining how different aberrations affect
clinical outcome (14, 21, 22) and which of these are involved in
resistance to treatment and metastases formation (23–25).
Notwithstanding recent advances, identification of structural

variations of short repeats in protein sequences remains elusive.
This is the case because of the general difficulty of identifying
diverse types of repeats in sequences, which vary in length, level
of divergence, and periodicity, and because of the short length of
reads obtained with next generation sequencing (NGS), which
creates major difficulties for the current assembly techniques
(26–28), exacerbated by various causes of sequencing errors and
DNA damage (29). Consequently, variations in the compositional
order of proteins (30, 31), a large class of mutations, which

includes runs of amino acids, short tandem repeats, interspersed
repeats, repetitive domains, and more generally, overrepresentation
of motifs in low-complexity regions (hereafter, collectively denoted
repeats), has not been systematically characterized in cancer. To
date, microsatellites, a relatively minor subclass of repetitive se-
quences composed of tandem repeats of 1- to 5-bp units, represent
the only well-studied case (11–14).
Repeats in proteins are hotspots of protein and species evo-

lution that emerge through replication slippage and recombi-
nation (32–34). Repetitive domains are building blocks of
key macromolecular complexes [e.g., nuclear pores (35) and
proteasomes (36)] and play essential roles in a variety of biological
processes, notably transcription regulation, protein–protein in-
teraction, and immunity, as exemplified by the enormous variety
of Zinc finger (37), Ankyrin (38), WD40 (39), and Leucine-rich
(40) repeats in animal proteins. Variations in the number of
repeat units have been associated with acquisition of new func-
tions and rapid evolution of complex phenotypic traits in diverse
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life forms (41–45). This fast evolution of repeats comes at the
cost of promoting genetic diseases, in particular cancer and
neurodegeneration (46–48), where repeat dynamics (mostly ex-
pansion but in some cases contraction) often correlates with
disease severity (49, 50). Evolution of new repeats is markedly
accelerated after duplication and is largely driven by positive
selection, highlighting their potential role as disease drivers in
somatic evolution (51).
In light of the importance of repeats in rapid evolutionary

processes and their demonstrated involvement in human pa-
thology, we hypothesized that repeat dynamics might play a more
important role in tumor evolution than presently realized, es-
pecially because repeat generation in tumors can be enhanced
due to impaired DNA replication (52, 53) and repair (54). To
this end, we generalized the quantification of repetitive motifs
beyond microsatellites and developed a rigorous methodology to
systematically quantify variations in the repeat content (repeat
instability) of genomes (bypassing difficulties associated with
assembly) and of repeat-containing proteins directly from ge-
nomic and proteomic sequence raw data. Applying the meth-
odology to a collection of diverse datasets, we demonstrate its
utility for identifying tissue-specific and tumor-specific repeat
instability signatures (RISs) and elucidate the transient dynamics
and compensatory role of repeat instability in tumor evolution.

Results
Repeat Instability in Amino Acid and Nucleotide Sequences. The
following datasets were analyzed (SI Appendix, Table S1): 1)
proteomic datasets of breast and prostate cancer patients, in-
cluding an original cohort of ovarian cancer patients; 2) genomic
datasets of prostate cancer patients, including an original cohort
of benign tissues serving as a noncancerous control; 3) genomic
pancancer cohorts from The Cancer Genome Atlas (TCGA),
which include a tumor sample, an adjacent matched normal sam-
ple, and a blood sample from each individual, providing for a
comparison between tissues; and 4) samples from patients with
metastatic spread, which allowed for analysis of repeat instability
during the evolution from the primary tumor to the metastatic state.
To measure the repetitiveness of motifs (k-mers) in a set of

amino acid or nucleotide input raw sequences from bulk samples
(i.e., peptides or short DNA reads), we define the compositional
order ratio (CR) of a motif (m) as the total number of the motif
recurrences (Rm) divided by the total number of sequences in
which the motif appears (Pm): CRm = Rm/Pm (Materials and
Methods and Fig. 1A). The CR is high when a motif recurs
multiple times in a sequence. The CR signal in the human pro-
teome strongly departs from random expectations (Fig. 1B) and
is substantially more robust for repeat identification than alter-
native measures of repetitiveness, such as the frequency of a
motif or its fraction in the proteome (SI Appendix, Fig. S1).
The CR is directly estimated from both proteomic and geno-

mic raw sequence data (Fig. 1A). In proteomic data, CR is
evaluated from a list of thousands of measured peptides (typi-
cally 10- to 30-amino acids long) and their abundances; the
abundance values are used to estimate the effective number of
sequences (Materials and Methods). We used triplets (k = 3,
8,000 amino acid triplets) to measure CR in proteomic data, as
this is the optimal choice of motif length to characterize protein
repeats (31). In whole-exome sequencing (WES) data (coverage
depth 100×), CR is computed from a list of millions of short
DNA reads (typically, 50- to 150-base pairs long) using hexamers
(k = 6, 4,096 nucleotide hexamers) such that the proteomic and
genomic motif spaces have comparable sizes. The choice of
k = 6, a shorter unit length than the naïve choice of k = 9, which
translates into an amino acid triplet, is also justified by the oc-
currence of synonymous substitutions that do not change the
amino acid composition (SI Appendix, SI Text). For CR evalua-
tion, motifs can overlap and do not need to recur in tandem such

that all types of repeats, both pure and diverged, from runs to
repetitive domains that are shorter than the short-read length
can be identified (SI Appendix, SI Text). Several examples of
repeats in proteins and their respective coding nucleotide re-
peats identified in our analysis are shown below, emphasizing the
diversity of repeats that can be captured. Analysis of genomic
data demonstrates that CR is a stable measure, which saturates
at a low coverage depth (SI Appendix, Fig. S2) and is unbiased
with respect to the sample size (SI Appendix, Fig. S3).
We define the RIS (RIS = ΔCR) of a sample as the vector of

CR percentage changes for all motifs compared with a control
sample (Materials and Methods). In a patient, the somatic sig-
nature of a tumor is computed relative to a control sample taken
either from an adjacent matched normal tissue or from the
blood. Fig. 1 C and D shows examples of typical tumor signatures
in proteomic and genomic data. Because repeats can expand or
contract in a given genome, we evaluate the overall repeat in-
stability (ORI) by the sum over the absolute value of the signa-
tures of all motifs (ORI =

PjΔCRj). The repeat instability
measures (RIS and ORI) can be decomposed into different
classes of repeats (e.g., microsatellites vs. larger repeats) (SI
Appendix, SI Text) as we later demonstrate on single patients.
Importantly, proteomic signatures reflect the compound effect of
somatic genome instability and differential expression of repeat-
containing peptides, whereas genomic signatures reflect genome
instability alone. We applied this methodology to analyze peptide
sequences in the proteomic datasets and short-read nucleotide

A B
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Fig. 1. Methodology for estimating repeat instability in genomic and pro-
teomic sequence raw data. (A) Illustration of the method for estimating the
CR of motifs (i.e., k-mers) using k = 3 (triplets) for proteomic data and k = 6
(hexamers) for genomic data (Materials and Methods). The distribution of 2
motifs (blue and red) is illustrated on a list of input sequences, i = 1. . .N.
Input sequences can be either peptides (with abundances wi) obtained from
proteomic MS data or DNA short reads obtained from NGS (with equal
abundances, wi = 1). CR evaluation of the red motif (m) in the case of ge-
nomic data is shown in the table, where for each sequence i, ri is the number
of red motif recurrences, δi = 1 if the red motif exists, or δi = 0 if no red motif
exists. (B) Application of CR estimation to the 8,000 amino acid triplet motifs
distributed in the human proteome (black curve) shown against 2 random
proteomes (uniform: with uniform probability of amino acid recurrence [red]
and unigram: where the probability of amino acids recurrence is based on
the human proteome [gray]). (C and D) Examples of the RISs (RIS = ΔCR) in
tumors relative to their matched normal tissue of 3 patients (blue, red, and
green) in the breast cancer proteomic dataset (C) and in the genomic breast
cancer dataset (D) (SI Appendix, Table S1).
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sequences in the genomic (WES) datasets (SI Appendix, Table
S1). We start with the analysis of proteomic datasets and grad-
ually move to the analysis of genomic cohorts, ending with single
patients’ analysis.

Proteomic Repeat Instability Reflects Breast Cancer Tumor Progression.
We first applied the repeat analysis methodology to a proteomic
dataset from 21 breast cancer patients (55) (SI Appendix, SI Text
and Table S1). We found that the CR of motifs (amino acid trip-
lets) tends to increase in tumors relative to matched normal tissues
as measured by the average signature of triplets across patients (Fig.
2A). To ensure that this trend was not a consequence of large
variations of CR in a few patients, we assessed the frequency of
variation in the CR among the patients. The histogram of the
frequencies is bimodal, with CR consistently increasing for many
triplets and consistently decreasing for a few triplets among the
patients (Fig. 2B). The remarkable shift to high frequency that was
observed for strongly altered (>1%) triplets confirms that CR in-
crease is the dominant phenomenon and that CR can be used to
characterize tumors. Principal component analysis (PCA) of the
CR estimates (52 samples × 1,229 triplets) shows clear separation
of matched normal samples from tumor samples in the first 2

principal components (PCs) (Fig. 2C). This separation was cap-
tured in 2 experimental pools (SI Appendix, SI Text and Table S1),
indicating that the tumor vs. normal segregation is robust. The PCA
suggests that the dimensionality of discrimination is low such that
classifiers can be built using a small number of discriminative fea-
tures (i.e., triplets). Examples of discriminative triplets (e.g., PVP,
APV, APA, YGY, DVL, TAA) are shown in SI Appendix, Fig. S4.
To further test the predictive signal of RISs, we built binary

classifiers that discriminate between normal and tumor samples
using support vector machine (SVM) with a linear kernel and
examined various feature selection criteria in a standard leave-1-
out analysis (SI Appendix, Table S2). Every tested selection cri-
terion (Kolmogorov–Smirnov [KS] test, Fisher score, and CR-
based criteria) achieved classification accuracy >80% with a
small set of triplets (∼10 to 30). We further inspected the sim-
plest criterion for selecting triplets with high CR (i.e., those that
frequently recur in the list of peptides). This approach achieved
a maximum accuracy of 89% with only 36 selected triplets (SI
Appendix, Table S2) that are frequently and significantly altered
among the patients (SI Appendix, Fig. S4). To ensure that the
classifier performance is not sensitive to the small number of
samples, we also tested its performance as a function of the

Fig. 2. Analysis of tumor signatures in proteomic data from 21 breast cancer patients. (A) The average RIS across patients <ΔCR> evaluated relative to the
respective matched normal (MN) tissue in each patient. When both stage III and metastatic tissues are sampled from the same patient, the average signature
is used. (B) Histograms of the number of triplets vs. the number of patients in which the triplets’ CR increased (ΔCR > 0) shown for all identified triplets
(j<ΔCR>j > 0%, n = 1,229; red) and for triplets with j<ΔCR>j > 1% (n = 157; blue). (C) PCA of the CR matrix (52 samples × 1,229 triplets), indicating the
separability between normal and tumor samples in the first 2 PCs. A gray solid line is superimposed for visual clarity of the discrimination. Perpendicular to it,
the light gray line indicates the division between the 2 experimental pools (SI Appendix, SI Text and Table S1). (D) The effect of sample size on the SVM linear
classifier using the top high-CR triplets as features (n = 36). Classification performance in a leave-1-out analysis improves with sample size. Error bars are
estimated from 20 trials of random choice of samples. (E) Triplets (n = 24) with increased average signature (<ΔCR> > 5%) in the metastatic samples (M)
relative to matched normal (N) reveal that CR increases in the transition from stage II to stage III. (F) Triplets with decreased signatures in the metastatic
signature (<ΔCR> < −2%, n = 23) tend to decrease from stage II to stage III. P values correspond to the KS test. Trends in E and F are not expected (SI
Appendix, Fig. S5). Accuracy = percentage of correct classifications. Sensitivity = TP/(TP + FN). Specificity = TN/(TN + FP). FN, false negative; FP, false positive;
TN, true negative; TP, true positive.
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number of samples and found that it improves as more samples
are included, testifying to the generality and robustness of this
simple approach for discriminating between tumor and normal
samples (Fig. 2D).
Although good performance was achieved in discriminating

tumor from normal samples, metastases do not appear to be well
separated from primary tumors (Fig. 2C). Nonetheless, we no-
ticed that several triplets displayed consistent variation from
normal to primary tumor to metastases (e.g., the triplet TAA in
SI Appendix, Fig. S4). Thus, to test for signatures correlated with
cancer progression, we selected triplets with the strongest aver-
age signature in the metastases (relative to matched normal) and
tested whether their signatures varied from stage II to stage III.
This particular comparison was performed, because selection of
triplets with strong signatures in the metastases statistically se-
lects weaker signatures in stage II and stage III, but differences
between stage II and stage III are not expected (SI Appendix, Fig.
S5). As implied by the tendency of CR increase in tumors, we
found more triplets with average signatures increased from stage
II to stage III (Fig. 2E) than triplets for which the average sig-
natures decreased (Fig. 2F). These trends were robust to the
choice of the threshold used to select triplets with strong signa-
tures in metastases (SI Appendix, Fig. S5). Notably, a weaker
variation between stage III and metastases was observed, sug-
gesting that the differential expression of repeats is especially
important at early stages of tumor evolution. Mapping all dis-
criminative triplets to proteins and identifying repeat-unstable
proteins (SI Appendix, SI Text) indicated that the proteins with
high repeat instability are enriched among the proteins encoded
by known cancer genes (SI Appendix, Fig. S6), indicating a role of
repeat instability in oncogenesis.
Last, by analyzing the distribution of intervals between con-

secutive triplets, we decomposed the repeat instability signal into
different repeat classes (SI Appendix, SI Text). Runs of single
amino acids are the most abundant repeat type, yet they made up
only a fraction of all of the repeats that we analyzed. The ORI
was similar between primary and metastatic tumors (relative to
matched normal), and variations in the repeat content of different
repeat types (i.e., runs vs. larger repeats) were uncorrelated across
patients (SI Appendix, Fig. S7).

Proteomic Repeat Instability Discriminates Tumors from Normal
Tissues in Ovarian and Prostate Cancers. To further test the ca-
pacity of the proteomic CR signal to discriminate between tu-
mors and normal tissues, we analyzed 2 additional datasets: an
original cohort of ovarian cancer tumors (n = 13) and unmatched
normal tissues (n = 14) and a published dataset (56) of prostate
cancer tumors (n = 28) and matched normal tissues (n = 8) (SI
Appendix, SI Text and Table S1). In the ovarian dataset, we
identified 474 triplets with CR > 1. PCA of the CR matrix
identified the 3 subsets of patients in this dataset as distinct
clusters in the PC1–PC2 plane (SI Appendix, Fig. S8). None-
theless, tumors were well separated from normal tissues by PC3
in each of the 3 subsets (Fig. 3A and SI Appendix, Fig. S8). SVM
applied to this cohort verified that this discrimination is highly
robust, achieving high accuracy (>90%) with few selected features
(SI Appendix, Fig. S8). In the prostate dataset, the results were
different. Unlike in the breast and ovarian datasets, PCA of the full
CR matrix (36 samples by 1,330 triplets) as well as SVM analysis do
not discriminate between tumors and normal tissues (SI Appendix,
Fig. S9). Nonetheless, PCA based on selected features (n = 20)
discriminates tumors from normal samples (Fig. 3A and SI Ap-
pendix, Fig. S9). These results demonstrate high similarity between
the proteomic repeat instability of tumors and normal tissues in the
prostate but also reveal tumor-specific signatures.
The proteomic CR signatures reflect changes in expression

levels of repeat-containing proteins and accordingly, do not di-
rectly convey any information on genomic somatic variation in

the repeat content in protein-coding DNA. Hence, to explore the
role of repeat instability in somatic evolution, we turn to the analysis
of genomic data. Hereafter, we analyze short reads of nucleotide
sequences obtained from WES data (SI Appendix, Table S1).

Genomic Repeat Instability Discriminates between Healthy and
Cancerous Prostate Tissues. We explored genomic repeat in-
stability in the prostate, the tissue type with the richest dataset
among the ones examined, which includes samples from both
healthy individuals and cancer patients (SI Appendix, Table S1).
We analyzed the TCGA dataset of prostate cancer patients (57),
focusing on cases for which a primary tumor sample and 2
control samples from blood and from an adjacent matched
normal tissue were collected. In each patient (n = 41), we
computed the CR signatures of the tumor and of the adjacent
normal samples relative to blood. In most of the patients, the
signatures of tumor and adjacent normal samples were strongly
and positively correlated (Fig. 4A and SI Appendix, Fig. S10).
This correlation was independent of the nature of the signatures
(i.e., expansion dominated or contraction dominated), implying
that the signatures are primarily tissue specific (SI Appendix, Fig.
S10). High similarity between the signatures was also observed
across patients as demonstrated by the bimodal distribution of
the pairwise correlations (SI Appendix, Fig. S10). This reflects
the prevalence of positive or negative correlation between the
signatures from different patients, a consequence of the domi-
nance of either repeat expansion or contraction in a given ge-
nome. The similarity between the signatures of prostate tumors
and their respective adjacent tissues (relative to blood) is con-
sistent with the similarity between tumors and matched normal
tissues observed in the proteomic prostate dataset.
To determine whether these RISs include tumor-specific

characteristics, we compared them with signatures of benign
prostate hyperplasia (BPH) from healthy individuals (n = 15) (SI
Appendix, SI Text and Table S1). Superposition of tumor, adja-
cent normal, and benign signatures relative to matched blood
(Fig. 4 A, Left) highlights the close similarity between them, with
the healthy signatures being slightly weaker. Accordingly, the
distributions of the ORI values of tumor and adjacent normal
signatures in cancer patients are similar, whereas for healthy

Fig. 3. PCA of proteomic ovarian and prostate datasets. (A) Analysis of an
original ovarian dataset, which includes 13 primary tumors and 14 un-
matched normal tissues (SI Appendix, Table S1). PCA of the CR matrix (27
samples by 474 triplets) discriminates well between tumors and normal tis-
sues in the 3 different experimental pools of patients (separated by dashed
lines) as depicted in the PC2–PC3 plane. This discrimination is also captured
by SVM analysis and is highly robust (SI Appendix, Fig. S8). (B) Analysis of the
proteomic prostate dataset (56), which includes 28 primary tumors and 8
matched normal sampled patients (SI Appendix, SI Text and Table S1); 1,330
triplets with CR > 1 were identified. PCA only based on the top selected
features discriminates well between tumors and normal tissues (SI Appendix,
Fig. S9) and is demonstrated here in the PC1–PC2 plane for the top 20 triplets
identified by Fisher score test. This discrimination is, however, less robust
than in the breast and ovarian datasets and suggests an overall higher simi-
larity between tumors and normal tissue in the prostate.
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signatures, lower values were observed (Fig. 4 A, Right). How-
ever, these differences had limited statistical significance, em-
phasizing the strong tissue specificity of prostate signatures.
Thus, to identify tumor-specific features, we trained SVM clas-
sifiers as in the proteomic case, but to account for the expansion-
dominated and contraction-dominated genomic signatures, we
considered the absolute value (jΔCRj) in our analysis. Tumor
tissues were robustly discriminated from benign ones (SI Ap-
pendix, Table S3, task 1), with 154 discriminative motifs identi-
fied using the KS test (P value < 0.001) (Fig. 4B). The classifiers
could not distinguish between tumor and adjacent normal signa-
tures relative to blood, and no discriminative motifs were found (SI
Appendix, Table S3, task 2) as expected from their close similarity.
Thus, using adjacent normal tissues as a control instead of blood
leads to significantly weaker signatures (Fig. 4A). Nonetheless,
these signatures contain tumor-specific information: the identified
discriminative motifs between these signatures and those of benign
tissues largely overlap those that were identified in task 1 (SI Ap-
pendix, Table S3, task 3). Therefore, we used this signature when a
blood sample was missing.
To test the predictive power of the 154 discriminative motifs,

we considered an independent dataset (58) of 111 prostate
cancer patients (SI Appendix, Table S1). The repeat instabilities
of the test and training sets showed remarkable similarity (Fig.
4B). The similarity between the tumor and adjacent matched
normal signatures, but not the healthy signatures, implies that

the adjacent normal prostate tissues in cancer patients possess
tumor-specific features in the absence of histological evidence.
We validated this prediction using various training–test sets,
demonstrating that tumors are predicted with high accuracy
(>90%) based on both tumor and adjacent normal signatures (SI
Appendix, Fig. S11).
To identify genes that were most strongly affected by repeat

instability, we mapped the short repeat-containing reads onto the
human genome and estimated repeat instability in genes (SI
Appendix, SI Text). We found that the 10 most unstable (domi-
nant) motifs (with jΔCRj > 5% in >80% of the patients) (Fig.
4A) were not discriminative and did not map to coding regions
but rather, to regulatory regions (SI Appendix, Fig. S12). Because
these dominant signatures appear in all tissues, including benign
prostates, it seems likely that they represent repeat hotspots in
noncoding regulatory regions that might exert currently unknown
effects on transcription regulation (59). In contrast, discriminative
motifs mapped to protein-coding regions (SI Appendix, Fig. S12).
As in the proteomic case, the set of most repeat-unstable

genes was significantly enriched in known cancer genes (SI Ap-
pendix, Fig. S13). We analyzed in detail the amino acid and
nucleotide compositions of the identified repeat-unstable genes.
This analysis also emphasized the ability of our methodology to
identify diverse types of repeats from runs of amino acids in proteins
(e.g., the glutamine tracks in FOXP2 protein) (SI Appendix, Fig. S14)
to repetitive domains (e.g., Cysteine-rich PAK1 inhibitor CRIPAK)

Fig. 4. Repeat instability in prostate tissues. (A) RISs (RIS = ΔCR) of all prostate datasets (SI Appendix, Table S1), Barbieri et al. (58) (n = 111; black), TCGA (n =
41; red), and BPH (n = 15; green), superimposed (Left). The 10 most dominant hexamers are evident (large peaks). The ORI (ORI =

PjΔCRj) distributions of
tumor (T), adjacent normal (N), and benign (B) tissues across the datasets (Right). In the dataset of Barbieri et al. (58), tumor signatures are estimated relative
to blood (T–B; n = 22) or to an adjacent tissue (T–N; n = 89), respectively (1 to 2). In TCGA, signatures of tumors (T–B) and adjacent normal tissues (N–B) are
computed relative to blood (3 to 4). Benign signature (B–B) is computed relative to blood (5). (B) Heat map of the 154 discriminative hexamers (SI Appendix,
Table S3) contrasting RIS of tumors in the TCGA dataset with that of benign prostates, both computed relative to blood (Train). Test sets display similar
characteristics to tumors of the train set (signature numbers are the same as in A, Right). Results of training–test sets are robust (SI Appendix, Fig. S11). Colors
reflect actual ΔCR values (in percent). Hexamers are ordered by their KS P values and grouped into those that have higher jΔCRj in tumors and those with
higher jΔCRj in the benign tissues within the train set. Patients are ordered by the portion (F) of discriminative hexamers that increased in each signature.
(C) Relationship between ORI and the number of nonsilent mutations, DNA burden of copy number alterations, and ploidy in tumors. Each point represents
a patient in the dataset of Barbieri et al. (58). ORI is estimated using the set of 154 discriminative hexamers.
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(SI Appendix, Fig. S15) as determined from the recurrence of hex-
amers in the protein-coding DNA (SI Appendix, SI Text).
Lastly, we explored the relationship between repeat instability

and other somatic aberrations in this dataset. The ORI of dis-
criminative motifs weakly and inversely correlated with the
nonsilent point mutation load but was independent of copy
number alterations (i.e., DNA burden) and aneuploidy status
(Fig. 4C). The apparent, even if weak, tradeoff between repeat
instability and the mutation load suggests that, in tumor evolu-
tion, repeat instability could be a compensatory mechanism for
point mutations. To test this hypothesis, we performed a pan-
cancer analysis, exploring a wider distribution of mutation loads.

Genomic Repeat Instability Is Inversely Related to Somatic Point
Mutation Load in the Pancancer Dataset. In addition to the pros-
tate adenocarcinoma analyzed above, 3 other cancer types,
namely breast (60), bladder (61), and lung (62), were selected
from the TCGA (SI Appendix, Table S1). The selected cancers
represent different point mutation load regimes: prostate and
breast cancers have relatively low numbers of point mutations
per sample, whereas bladder and lung cancers have comparatively
high numbers of point mutations (63). As in prostate cancer, we
focused our analysis on patients with available data from all 3 types
of samples (tumor tissue, adjacent matched normal tissue, blood) to
measure the RISs of the primary tumor and its adjacent normal
sample relative to the blood sample. Similar to the observation on
prostate cancer (SI Appendix, Fig. S10), adjacent normal and tumor
signatures strongly correlated in individual patients across all cancer
types (SI Appendix, Fig. S16).
Across cancer types, we identified a consistent inverse re-

lationship between the ORI and the number of nonsilent point
mutations, which was independent of the overall genomic mu-
tational burden (Fig. 5A). Despite the similarity between adja-
cent normal and tumor signatures observed in each patient (SI
Appendix, Fig. S16), patients with low-mutational load cancers
(i.e., breast) display higher repeat instability in normal tissues
compared with the respective tumor signatures, whereas for
high-mutational load cancers (bladder and lung), normal signa-
tures were weaker than the respective tumor signatures (Fig.
5A). In prostate patients, the similarity between tumors and
normal tissues was the highest, explaining the difficulty in the
identification of tumor-specific features in this case and the need
for a noncancerous control (compare with Fig. 4). Consistently,
we observed a greater similarity between tumors and normal
tissues in the prostate proteomic dataset. Thus, repeat instability
is high when the mutation load is low and low when the mutation
load is high in accord with previous observations on MSI (11),
and this effect is stronger for the signatures of adjacent normal
tissues in the vicinity of tumors than for the tumor signatures
themselves. The inverse relationship between the point mutation
load and the ORI holds both for gain (expansion) and loss
(contraction) of repeats but is more pronounced for gain (SI
Appendix, Fig. S17).
Furthermore, to elucidate the differences between cancer and

adjacent normal genomes across tissues, we assessed the pairwise
correlations among patients of both adjacent normal signatures
and the respective tumor signatures (Fig. 5B). Adjacent normal
tissue signatures display higher correlations across patients
compared with the respective tumor signatures: that is, the
normal signatures are more tissue specific. This effect was more
pronounced in patients with low-mutational load cancers (breast
and prostate), where the repeat instability is high. The weaker
tissue specificity of tumor signatures suggests that common
mechanisms, such as impaired DNA replication and repair,
similarly affect the repeat content of tumors across tissues and
individuals and consequently, blur the similarity between the
same tissue samples across individuals, with a net effect of re-
duced tissue specificity. This effect conversely enhances the

tumor-specific signal in tumor signatures as we demonstrated in
the case of prostate cancer (Fig. 4 and SI Appendix, Table S3),
leading to a more homogenous structure of the pairwise corre-
lations between tumor signatures, across patients, and across
different cancer types (Fig. 5B).

Genomic Repeat Instability Recapitulates Tumor Phylogeny within
Patients and Correlates with Metastatic Spread. To validate the
role of repeat instability as a distinct and compensatory mutation
class in tumor evolution, we studied 2 patients with metastatic
spread (SI Appendix, Table S1). The 2 patients with the largest
number of available sequenced samples from different anatom-
ical sites were selected from 2 recent studies of metastatic
prostate cancer (WCM0) (24) and chemotherapy-resistant urothelial
carcinoma (WCM117) (25). The prostate cancer patient repre-
sents a low-mutation load cancer type, whereas the bladder
cancer patient represents a high-mutation load cancer type.
The analysis of the RISs from different anatomical sites of the

same patient measured relative to blood highlights a clear hier-
archy based on the correlation between the signatures, where
primary tumors and metastases are well separated into 2 clusters
both in the prostate cancer patient (Fig. 6A) and in the bladder
cancer patient (Fig. 6B). Furthermore, we approximated the
tumor phylogeny by similarity dendrograms that were con-
structed from the repeat instability pairwise correlation distances
and from the Hamming distances between mutated genes using
the simple unweighted pair group method with arithmetic mean
(UPGMA). The repeat instability- and point mutation distance-
based dendrograms were comparable (Fig. 6) and were weakly
sensitive to the choice of the linkage criterion (e.g., shortest
distance or UPGMA) and distance measure (Spearman or Pearson
correlation) (SI Appendix, Fig. S18). Critically, however, the tu-
mor phylogeny inferred from repeat instability was more con-
cordant with the detailed phylogeny that we have previously

Fig. 5. Pancancer analysis of repeat instability in the TCGA datasets. (A) The
ORI (ORI =

PjΔCRj; vs. blood) in tumors and corresponding adjacent
matched normal tissues (Top; few outliers with ORI > 2,000 are omitted for
clarity) (SI Appendix, Fig. S17). The mutation load estimated by number of
nonsilent point mutations (Middle) and the copy number alterations (i.e.,
DNA burden) measured by the fraction of altered genes (gain or loss) in the
proteome (Bottom). An inverse relationship exists between repeat instability
and point mutation load. In low-mutational load cancer types, repeat in-
stability is larger in the adjacent normal tissues than in tumors, but this re-
verses in high-mutational load cancers. ***KS test P value < 0.01. (B) Spearman
correlation among patients of tumor RISs (RIS = jΔCRj; Upper) and of adjacent
matched normal signatures (Lower) measured relative to the blood sample in
each patient.
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obtained by rigorous analysis of the clonal compositions of
samples and the tempo of somatic aberrations (24, 25). Repeat
instability-based phylogeny captures some fine details of the re-
lationship among samples: 1) the prostate primary tumor sample
with neuroendocrine features (Fig. 6A) is close to the other
primary tumor samples (24); 2) the metastatic pelvic lymph node
in the bladder cancer patient that was surgically removed at the
time of the cystectomy is close to the bladder primary tumors
(Fig. 6B), in particular to the untreated primary tumor (despite
marked difference in the ORI between these samples), as previ-
ously inferred using independent techniques (25); and 3) me-
tastases from the same anatomical site cluster together, with few
differences. The finding that the phylogenies derived from repeat
instability are closely similar to the true phylogenies suggests that
repeat instability evolves by divergence at clock-like rates.
To test the hypothesis that repeat instability is a compensa-

tory, adaptive path of tumor evolution, we compared the ORI
and the nonsilent point mutation load in primary tumors and
metastatic sites. In both patients, repeat instability was signifi-
cantly higher in primary tumors than in metastases, corroborat-
ing the inverse relationship between repeat instability and point
mutation load (Fig. 6 A, Right and B, Right). In contrast, in both
patients, the number of mutations as well as the number of gene
copy number alterations (genomic burden) significantly in-
creased from the primary to the metastatic states (SI Appendix,
Fig. S19), further indicating that repeat instability is a distinct
phenomenon. The transient dynamics of repeat instability is also
captured in the bladder patient, showing a large increase in the
untreated primary tumor relative to wild type followed by a
gradual reduction in the treated primary and metastatic tumors
inverse to the dynamics of point mutations (Fig. 6B). Importantly,
the 2 patients represent 2 distinct evolutionary regimes, whereby
the transition to a metastatic state in the low-mutation load cancer

type (prostate) is accompanied by an apparent increase in dN/dS
(i.e., positive selection), whereas in the high-mutation load cancer
type (bladder), this transition is marked by a decrease in dN/dS (SI
Appendix, Fig. S20) (i.e., purifying selection) in accord with the-
oretical predictions (64, 65). Thus, repeat instability dynamics in
individual patients is robust to mutation selection status. These
patients had no mutations in mismatch repair genes. Only the
bladder patient had missense mutations in PLOD/POLE genes.
Thus, repeat instability dynamics appears robust to DNA repair
status.
Last, to assess the relative contributions of different classes of

repeats, we decomposed the RISs into MSI and larger repeats
instability (LRI) by analyzing the distribution of interval recur-
rences of consecutive hexamers (SI Appendix, SI Text). In the
prostate cancer patient, MSI and LRI were highly correlated,
and each component significantly decreased from the primary to
the metastatic state independently (SI Appendix, Fig. S21). In
contrast, in the bladder cancer patient, despite a marked overall
correlation between MSI and LRI, MSI only weakly decreased
from the primary to the metastatic states, whereas LRI dropped
substantially (SI Appendix, Fig. S22). In both patients, MSI
makes up about 20% of the repeat instability signal, emphasizing
the importance of accounting for different types of repeats.
Taken together, these findings imply that repeat instability is
most pronounced at early stages of tumor progression and that it is
a transient genome alteration that compensates for the relatively
low number of driver mutations in early stages but is partially
reversed as mutations accumulate and tumor cells adapt.

Discussion
The involvement of repeat instability in human pathology is
supported by ample evidence (11–14, 46–50). However, the
current understanding of the role of this phenomenon in somatic

Fig. 6. Analysis of multiple samples from 2 individuals with metastatic spread. (A) Analysis of a prostate cancer patient with large metastatic spread and
multiple available biopsies from ref. 24. (Left) The RISs (RIS = ΔCR) of primary tumor samples (blue) and metastases (red) vs. blood are superimposed (Top), and
the heat map of the pairwise Spearman correlations across samples (Bottom) is shown. (Center) The dendrogram inferred by the correlations distance (1 − ρ)
among the RIS of samples (Top) and the dendrogram inferred by the hamming distance between the nonsilent point mutation of samples across genes
(Bottom). Dendrograms are estimated using UPGMA. Primary tumor leaves are colored in blue, metastatic leaves are in red, and connecting branches are in
black. Sample numbers are as in the heat map. (Right) The inverse relationship between the ORI (ORI =

PjΔCRj; Top) and the nonsilent point mutation load
(Bottom). Average values are depicted by dashed lines. Sample numbers are as in the heat map. Prad, prostate adenocarcinoma; NEPC, neuroendocrine
prostate cancer; LN, lymph node. (B) Similar analysis of a bladder cancer patient with the largest metastatic spread from ref. 25. Untreated sample (1) and a
treated metastatic sample (pelvic), which is the closest to the tumor ancestor wild type (6), are colored in green and are not considered to estimate averages
of repeat instability and mutation load (dashed lines in Right) of the treated samples. TUBRT, transurethral resection of bladder tumor; L, left; R, right.

Persi et al. PNAS Latest Articles | 7 of 10

M
ED

IC
A
L
SC

IE
N
CE

S

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908790116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908790116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908790116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908790116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908790116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908790116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908790116/-/DCSupplemental


evolution is mostly limited to microsatellites. Here, we developed a
technique to measure the repeat content of proteogenomes, ac-
counting for a broad variety of repeats. This approach allowed us to
systematically assess repeat instability across multiple studies di-
rectly from sequence raw data of bulk samples, yielding insights into
its dynamics and role in tumor evolution.
Our analyses of genomic signatures show that, compared with

blood, cancers and adjacent normal tissues manifest similar RISs.
These signatures are, to a large extent, tissue specific in accord with
analyses of repeat instability in other disorders (49, 50). However,
tumor-specific signatures, which correlate with tumor evolution
and allow for discriminating cancers from healthy samples, also
exist. Repeat instability is inversely related to the point mutation
load but is independent of other somatic aberrations. This inverse
relationship was observed between low-mutational load cancers
and high-mutational load primary tumors and critically, between
primary tumors and metastases from the same patient. Because
repeat instability includes MSI, our findings support and generalize
previous results showing that MSI is prevalent across cancer types
(14) but is consistently more pronounced in patients with low
mutation loads compared with those with high mutation loads (11).
Given that about 2/3 of the mutations in cancer can be attributed
to replication errors (53), which promote repeat instability (11,
49, 50), the observed tissue specificity of repeat instability could be
explained, in part, by tissue-specific cell division rates. Because
blood has a relatively high rate of cell divisions (66), it is sub-
stantially diverged from other tissues and is, therefore, an optimal
available choice for a control to characterize repeat instability (and
other somatic aberrations). Despite this divergence, the effective
population size of blood cells is likely large so that purifying se-
lection is highly efficient (i.e., blood is largely free of deleterious
mutations) and thus, can serve as an adequate control.
Collectively, our observations indicate that repeat instability is

a distinct adaptive path in tumor evolution. We propose a model
of tumor evolution (Fig. 7A) in which, at the initial phase of
tumorigenesis (low-mutational load cancers at the pancancer
level and primary tumors at the patient level), there are few
cancer driver mutations, and repeat instability serves as an ad-
ditional complementary mechanism, which increases (or main-
tains) the fitness of tumors. Later in tumor evolution, when
metastases and/or high mutation loads accumulate, repeat in-
stability is reduced as tumors adapt to specific niches. In high
mutational loads, the number of deleterious passenger mutations
is substantial, imposing selective pressure (64, 67) that could
reduce repeat instability. This theoretically predicted transition
in the evolutionary regimes of tumors at high mutation load is
also captured as the association of point mutation load with
clinical outcome (65). Thus, although most tumors evolve near
neutrality (65, 68–70), excess mutation loads could lead to de-
creased fitness both through intracellular mechanisms and
through the generation of neoantigens, which elicit immune re-
sponse (71–75). The immune system then exercises purifying
selection, thereby reducing repeat instability in the tumor cell
population. Those repeats that have been fixed in the cell pop-
ulation are likely beneficial. This is consistent with recent ob-
servations on microsatellite-unstable colon carcinomas, where
strong purifying selection eliminates antigen-presenting tumors
(73), whereas immune-adapted tumors metastasize (76). Hence,
although high mutation loads represent vulnerability to cancer,
beneficial mutations eventually fix in a population of tumor cells,
whereas deleterious mutations are removed such that cancer
maintains its fitness. The observed sharp decrease in repeat in-
stability at high mutation loads, as least in part, is likely to reflect
the dynamic nature of repeat propagation, which is fast and re-
versible, unlike accumulation of point mutations. This property
presents a therapeutic challenge yet opens avenues for identi-
fying neoantigens and developing immunotherapies against
immune-adapted tumors (71, 77).

According to our model, at the initial phase of tumor evolu-
tion, repeat instability can compensate for the lack of a sufficient
number of driver mutations and thus, increase tumor fitness,
whereas later in evolution, high repeat instability negatively affects
tumor fitness and is selected against. A positive correlation be-
tween high MSI and better prognosis in cancer patients has been
reported (14). In the context of our model, these findings are
likely to reflect stages of tumor progression at which repeat in-
stability already exceeded the optimal value. The existence of
compensatory adaptive paths (that is, point mutations vs. repeat
instability) suggests that, although the dynamic range of somatic
aberrations in cancers is substantial, the fitness of tumors tends to
be stable over time and can be robust to environmental pressure.
Under this view, normal tissues adjacent to tumors evolve

under comparable selective pressures imposed by the microen-
vironment, such as fluctuations in blood flow (78), metabolic
gradients (79), and therapy, so that they acquire signatures
similar to those of the tumors. This view is concordant with re-
cent reports on significant similarities between the somatic mu-
tation signatures of cancers and normal tissues (80, 81).
Accordingly, analysis of these tissue samples should allow pre-
diction of cancer breakout before pathological evidence as we
demonstrated in the case of prostate cancer. We hypothesize
that repeat instability is low in healthy tissues, rapidly increases
in tumors and adjacent normal tissues, and then drops as cancer
progresses (Fig. 7A). This transient dynamics is partially captured
by the single-patient analysis (compare with Fig. 6B) and by the
(slightly) lower repeat instability in benign tissues compared with
primary tumors (compare with Fig. 4). Such a transient compen-
satory mechanism of repeat expansion–contraction in tumors is
reminiscent of chromosomal duplications in fungi (82) and gene
duplications in viruses (83), which seem to represent the first rapid

BA

Fig. 7. Proposed evolutionary model of repeat dynamics in cancer and
normal tissues. (A) In healthy tissues (e.g., benign), repeat instability is low
(green zone). At the initial phase of tumor evolution (e.g., primary and low-
mutation load [ML] cancer types; cyan zone), tumors harbor a small number
of positively selected (S > 0) drivers (D). Repeat instability acts to increase
or maintain the fitness of tumors. Normal tissues adjacent to tumors react
similar to the selective pressures imposed by the microenvironment and
therapy. Repeat instability in adjacent normal tissues is even higher than
that of the corresponding tumors but is quickly reduced as the transition to a
neoplastic state is not achieved and normal cellular function is retained.
Later in evolution (i.e., metastases and high-ML cancer types; red zone), the
number of driver mutations increases, tumors are more adapted, and repeat
instability reduces. At least in high-ML cancers, the accumulation of pas-
senger mutations (P) outcompetes the drivers (P > D); hence, cancers resort
to purifying selection (S < 0), which reduces the repeat instability. Hence,
repeat instability acts as a transient, compensatory mechanism. The faster
transient effect in adjacent normal tissues explains their higher repeat in-
stability in low-ML cancers and lower repeat instability in high-ML cancers
relative to the respective tumors. (B) Repeat content, measured as the vo-
cabulary of amino acid triplets that compose protein repeats, correlates with
ordering of organisms by the product of effective population size (Ne) and
mutation rate (μ). Adapted from ref. 31, which is licensed under CC BY 3.0.
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route of adaptation. Thus, at the initial phase of tumor evolution,
both adjacent normal tissues and the tumor cells respond to the
environmental stress by increased repeat instability. Tumor cells
then acquire additional (driver) mutations, whereas normal cells in
the respective tissues start on the path of tumorigenesis but fail to
undergo neoplastic transformation, whereby repeat instability rap-
idly drops. This scenario implies a faster repeat dynamics in adja-
cent normal tissues relative to tumors (Fig. 7A), which may explain
the differences between tumor and normal signatures as a function
of the mutation load across cancer types (compare with Fig. 5). The
link between repeat instability and cancer progression is concordant
with the somatic evolution of repeat instability in some neurological
disorders, where variations in the number of repeat units have been
associated with disease severity (49, 50). Considering also the ob-
served connection between proteomic repeat instability and cancer
progression, we suggest that RISs can serve as important diagnostic
and prognostic markers that could be sensitive enough to detect
cancer in early stages.
In this work, we quantified and emphasized the importance of

gain and loss of repeat units in tumor evolution. Similar to gene
duplications (84, 85), selective constraints are relaxed in repeats
after duplication (51) such that mutations can accumulate at
higher rates and eventually lead to the acquisition of functions.
However, in contrast to gene duplicates, which evolve under
slightly relaxed purifying selection and mostly exhibit sub-
functionalization of ancestral proteins (85, 86), repeats evolve
much faster under strongly relaxed purifying selection and pos-
itive selection such that neofunctionalization is likely to be the
primary route of evolution (51). Such rapid evolution of repeats
has been documented in colonic carcinogenesis (87). Indeed, we
observed that highly repeat-unstable genes were enriched among
known cancer genes both in genomic and proteomic data. This
implies involvement of repeat instability and more specifically,
fast-evolving copies of repeats in oncogenesis.
The microevolutionary dynamics of repeat instability in cancer

(Fig. 7A) is similar to the evolution of repeats over long spans of
evolution (Fig. 7B). In diverse life forms, after the rapid evolu-
tion of repeat copies (51), some repeats become conserved as
they gain function (51, 88). The conservation of mutated repeats
seems to eventually translate into an increase in the diversity of
the repeat content of extant species proteomes in a manner that
correlates with the ordering of major clades by Neμ (effective
population size, Ne, multiplied by the mutation rate, μ): that is,
by the power of purifying selection (31, 89) (Fig. 7B). These
parallels with species evolution should serve as a motivation for
the study of repeat instability in somatic evolution of cancer.
Additional integrated genomic–proteomic research is needed

to study how somatic changes in the genome are translated into
differential expression of repeat-containing peptides and how
repeat copies diverge by accumulating mutations during tumor
evolution. Such research could lead to the identification of new
cancer drivers and the development of therapeutic strategies, in
particular immunotherapies, which target this mutational class.
Because the results indicate that repeat instability is an adaptive
mechanism that is important at the early stages of tumor evolu-
tion, we hypothesize that RISs could be relevant for early cancer

detection by cell-free DNA and liquid biopsy analysis. The roles
of repeat instability in other pathologies and various evolution-
ary scenarios remain to be explored.

Materials and Methods
The repeat instability method consists of quantifying the repeat content of
proteogenomes in the space of short motifs (i.e., k-mers) over the alphabet of
sequences analyzed. The extent of repetitiveness of a motif m in a genome
or proteome is measured by its CR as illustrated in Fig. 1A. The CR is defined
as the number of the motif recurrences in a set of sequences (i.e., WES DNA
short reads or Stable Isotope Labeling with Amino Acids in Cell Culture-Mass
Spectrometry [MS] peptides) divided by the number of sequences in which it
appears:

CRm =
PNs

i wm
i rmiPNs

i wm
i δmi

≡
Rm

Pm, [1]

where m = 1,. . ., Nm, and Nm = Ak is the number of searched k-long motifs
over the alphabet A (e.g., Nm = 203 for amino acid triplets, Nm = 46 for DNA
hexamers). ri

m is the number of recurrences of motif m on sequence i. δi
m = 1

if ri
m > 0 and is 0 otherwise. wi

m is a weight factor that measures the relative
abundance of sequence i in a sample, which is particularly relevant for
proteomic data. Ns is the number of input sequences. By definition, CR is ≥1.
In this motif representation, a repeat array in the genome is represented by
(a contribution to) the CR of the k-mer motifs of which it consists. Different
repeat arrays can contribute to the CR of a particular motif. The variation in
the repetitiveness of a motif m between 2 samples (e.g., a tumor sample and
a control sample) is measured (in percentage points) by

ΔCRm = 100×
CRm

2 −CRm
1

CRm
1

, [2]

where CR1
m and CR2

m are the CR values for the motif m in samples 1 and 2,
respectively. Sample 1 serves as a reference. The RIS is expressed as the
vector of ΔCR changes of all motifs, and the ORI is given by the sum over the
absolute values of motif variations,

P
mjΔCRmj.

A detailed description of the methods, including parameterization of the
motif search in amino acid (i.e., k = 3) and nucleotide sequences (i.e., k = 6),
decomposition of the repeat instability signal to different repeat classes
(e.g., microsatellites vs. larger repeats), effects of large structural variations
on repeat instability, implementation of the methods to the genomic and
proteomic datasets, estimation of statistical and systematic errors, estimation of
repeat instability in genes, and machine learning tools used in the study, are
provided in SI Appendix, SI Text. All datasets are described in SI Appendix, SI
Text and Table S1. For the original BPH cohort, after informed consent, BPH
tissue samples were collected from patients who underwent surgical resection
due to symptomatic BPH. Samples were examined and annotated by expert
genitourinary pathologists. Tissue cores were taken for DNA extraction fol-
lowed by WES or whole-genome sequencing (>40×). Matched blood samples
were used as patients’ control samples. The study of BPH was approved by the
Weill Cornell Medicine Institutional Review Board. A comprehensive molecular
characterization of the BPH samples is currently being finalized.
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