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Both natural languages and cell biology make use of one-dimensional encryption. Their 
investigation calls for syntactic deciphering of the text and semantic understanding of the 
resulting structures. Here we discuss recently published algorithms that allow for such 
searches: ADIOS (Automatic DIstillation of Structure) that is successful in discovering 
syntactic structures in linguistic texts and its MEX (Motif EXtraction) component that can 
be used for uncovering motifs in DNA and protein sequences. The underlying principles of 
these syntactic algorithms and some of their results will be described.  
 
Introduction 
 
There exists an interesting analogy between three different kinds of languages: the human 
languages, the language of computation, and the language of cell biology. In all these cases, 
language is being realized by one-dimensional constructs. In human language it is speech, with 
time being this one-dimension. In computation it may be viewed as the tape of the Turing 
machine, i.e. the ordered code into which all computations can be transformed. In biology it is the 
order of nucleotides in the DNA sequence, and the resulting sequential orders of nucleotides in 
RNA and amino-acids in proteins.  
 
Viewing the one-dimensional language (e.g. utterances of speech, or written language as 
composed of letters and symbols) as a code describing some reality, one needs to have rules 
describing how its words or sentences are connected to that reality (semantics) as well as other 
rules of how to put them together into a one-dimensional language representation (syntax). These 
two sets of rules comprise the logic of this language.  
 
The distinction between the semantic and syntactic levels, brought forward in the linguistic study 
of (Chomsky, 1957), is clearly well suited for biology. Syntax stands for the rules specifying 
structures of chromosomes (e.g. separation into genes, segmentation of genes into exons and 
introns) or structures of proteins. Semantics refers to the roles of the different elements, e.g. in 
guiding the complicated dynamics from transcription, the birth of mRNA, to translation, the birth 
of the protein. When applied to proteins, syntax should refer to possible structures existing in 
their sequential description in terms of amino-acids. Semantics may refer to their secondary or 
tertiary geometrical forms, as well as to the functional roles of different elements in specifying 
interactions between the protein in question and its biological neighborhood.  
 
In computation the rules are man-made. All computational devices work according to specified 
rules (software) that are carried out by some relevant hardware, and they are equivalent to a 
universal computational structure foreseen by (Turing, 1937) and known as the Turing machine. 
The latter has a code written on a single tape and the machine carries out operations by moving 
the tape and writing on it. The code leads to a computational result when the machine stops.  
Is there an analog of the Turing machine in biological or human languages? It seems that in 
biology we are still at the beginning of the road. Less than a decade into the post-genomic era, 
there exist still many open questions on the way to comprehending the full logic from embryo to 
organism and from the genome of a cell to its protein manufacturing. Linguistic studies for the 
past fifty years have often concentrated on the concept of ideal machinery that is specific to the 



human species. In the Chomsky approach this is the language faculty that endows us all with a 
Universal Grammar (Nowak et al., 2002). However, this idealistic picture is far from being 
formulated in well defined rules from which one can deduce actual human languages. In other 
words, the Turing machine of the human mind still remains an enigma.  
 
The set of rules specifying the syntax of a language in known as its grammar. Although speaking 
a human language comes naturally, setting up its rules in a comprehensive manner is a formidable 
task. As human beings we learn through examples, sometimes aided by explicit rules, yet when 
confronted with a certain sentence and having to decide whether it is grammatically right or 
wrong, we often rely on intuition. Hopefully one day we will understand the genetic reasons for 
the special human faculties of speech and language, but we are not there yet. Even when we will 
know it, this will not explain Universal Grammar. The latter would require extracting logical 
grammatical rules from the underlying rules of neural circuitry, which seems an impossible task.  
 
Chomsky (1957) has introduced a categorization scheme of formal languages by defining four 
types of grammars that differ from each other by their rules of generation. The simplest one is 
defined as Regular Grammar and can be generated by finite-state automata. The next one in 
hierarchy is the Context Free Grammar whose constructs can be generated by substitution rules of 
the type S → aSb where a and b belong to the lexicon, i.e. are `words’ or, in general, `terminals’ 
and S is a non-terminal. They are surpassed in complexity by Context Sensitive Grammars 
(CSGs, with rules such as Sc → aSb) and by Unrestricted Grammars. The latter are equivalent to 
Turing machines. Computational complexity of grammars is defined by the time it takes to decide 
whether a given string belongs to a given language. This time grows linearly in length of the 
string in regular grammars, polynomial in length for CFGs, presumably exponential for CSGs and 
it is undecidable in the general case of unrestricted grammars. For a recent review see (Nowak et 
al., 2002).  
 
Can biological sequences be characterized by these formal languages? A recent review by (Searls, 
2002) points out the many parallels that were drawn in the literature between linguistic methods 
in general, and formal languages in particular, with different constructs in biological sequences. 
One should realize, at the outset that it may be much too naive to expect all the genome to fit into 
one well defined grammar. One may, however, expect that its different functional parts will be 
susceptible to some specific grammatical constructs or, at least, will be amenable to searches 
using specific grammatical machinery. For example, there exist interesting non-coding RNA 
constructs that seem to fit into CSG construction rules. 
 
Motif extraction and grammar induction 
 
Grammar induction is a complex pattern recognition problem, which is being studied by the 
Machine Learning community (Duda, Hart & Stork, 2001). 
Recently (Solan et al., 2005) have introduced a new algorithm that looks for patterns (e.g. 
combinations of words) in the data and extracts syntactic rules by searching for patterns of 
patterns, allowing also for the occurrence of equivalence classes in this process.  
Their ADIOS (for Automatic DIstillation of Structure) algorithm is being trained on some 
training set, composed of sentences of a given corpus. It loads these sentences on a graph, whose 
vertices are the different words of the corpus. The resulting syntactic structure that it finds is 
exemplified in Fig.1.In 1A we observe how the combination of words ‘far away’ is made into a 
pattern (number 67). In 1B, upon reiteration of the algorithm, this pattern becomes part of another 
pattern (number 101) that includes also an equivalence class (number 98). The way these tree-like 
structures have to be read is described by numbers that follow the parsing rules from top down 



and from left to right. All elements of a pattern have to be chosen (in the given order) and only 
one of all elements of an equivalence class (denoted here by underlined numbers) has to be 
chosen. Further iterations of the algorithm eventually replace the original sentence by one pattern 
(the ‘root pattern’ in 1C). The original sentence can be read-off at the leaf-level of the tree, and is 
only one out of many sentences that the root-pattern can generate. This generalization of the 
model is being tested using standard measures. The novel sentences generated by ADIOS are 
tested for their grammaticality, thus calculating the precision of the method. In addition, the recall 
of the ADIOS machine is tested by running a test-set and finding out how many of its sentences 
can be accounted for by the trees that ADIOS has constructed. Fig. 1D is a standard CFG 
representation of the tree-structure of 1C.  
 
The algorithm was tested (Solan et al., 2005) on many benchmarks with remarkable success. The 
first was a subset of the CHILDES collection (MacWhinney and Snow, 1985), which consists of 
transcribed speech produced by, or directed at, 3-year old children. The ADIOS-students were 
subjected to the grammaticality judgment test used in English as Second Language (ESL) and, in 
spite of the fact that the test is aimed at students who have had 6-7 years of studies, ADIOS has 
reached a success rate of 60%, which is considered adequate.  
 
A second benchmark was the ATIS (Moore and Carroll, 2001) corpus of natural language 
sentences. This corpus contains 13,043 sentences. ADIOS machines were trained on 12,700 
sentences and the rest were used for measuring recall. Human subjects have judged the sentences 
generated by the ADIOS-trained machines, to be grammatically correct to about the same level as 
those of the original corpus. There also exists an artificially-constructed ATIS CFG (357 
terminals and 4592 rules) (Moore and Carroll, 2001). To learn and reproduce it well (Solan et al., 
2005), one had to rely on a group of 150 ADIOS-learners, where each learner has been trained on 
the same corpus using a different order of the sentences. 
 
An important component of ADIOS is the Motif Extraction algorithm MEX. 
It is an unsupervised algorithm that extracts motifs from sets of sequences which may be 
regarded as strings of letters from some given alphabet. 
Each sequence is represented as a path over a graph containing vertices representing  
the different elements of the alphabet. An example of such a graph is presented in Fig. 1. 
After uploading all sequences onto the graph, one counts the number of paths connecting 
vertices in order to define probabilities such as 
 
p(ej|ei)=(number of paths proceeding from ei  to ej )/ (total number of paths leaving ei) 
 
p(ek|ej,ei)=( number of paths proceeding from ei  to ej to ek) / (number of paths proceeding 
from ei  to ej ) 
 
for all vertices  ei of the graph. These data-driven probabilities allow for the definition of 
a position-dependent variable-order Markov model describing the data. 
A significant motif that is extracted by MEX is a sub-path along the graph defined by 
probability based criteria that account for convergence of many paths into the beginning 
point of a motif, and divergence of many paths from the end-point of the motif, as 
exemplified in Fig. 1. Motifs are not constrained by length, and may overlap with one 
another. There are two parameters of MEX: η, specifying a decrease in probability 
measures that determine convergence and divergence, and α specifying their statistical 
significance. For more details see (Solan et al 2005) and http://adios.tau.ac.il.  



 
 
In most linguistic ADIOS studies, the strings used by MEX were the sentences in the 
studied corpus, and the graph started out with vertices that were the words in the text. 
Further iterations of ADIOS were implemented by including within the graph vertices 
that corresponded to patterns, and vertices that corresponded to equivalence classes. 
In the biological applications to be described below, MEX has been applied to strings of 
DNA, where the alphabet consists of four nucleotides, and strings of proteins, whose 
alphabet consists of 20 amino-acids. 
 

 
 
 
 
Applications to Biology 
 
In natural languages we are accustomed to think in terms of a single grammar. As far as ADIOS-
learning is concerned, this may not be true; i.e. different ADIOS CFGs may result from corpora 
that differ in their contents. In Biology one may expect different processes to have different 
grammars associated with them. Examples were pointed out by (Searls, 2002).  
Here we wish to discuss two examples of the usefulness of the novel apparatus of MEX: 
uncovering motifs in DNA and protein sequences. 
 
Transcription factor binding sites 
 
The DNA application concentrates on motif search in the promoter regions of genes. These 
regions lie upstream to the gene and serve to control its transcription into mRNA. Such control 
comes about by proteins, known as transcription factors (TFs), which bind to particular loci on 
the chromosome. The computational challenge is to find subsequences that serve as candidates 
for transcription factor binding sites (TFBSs). The conventional approach to solve such questions 
is to select genes that are known to be activated by a particular TF, and search subsequences that 
are over-represented on their promoters. MEX is an unsupervised algorithm and may be applied 
to the whole genome. This has the advantage that it can find novel strings of nucleotides (four 
nucleotides form the alphabet of DNA) unconstrained by present biological knowledge of TF 
binding properties.  
 
Such a study for the yeast genome has recently been published by (Segal et al. 2007). MEX was 
applied to all 4483 promoters of 6335 genes revealing a large number of motifs. The latter were 
then subjected to screening by results of 40 different experiments in which expression analysis of 
mRNA has been performed for several time points in each experiment. For a motif to serve as the 
candidate for a TFBS it has been required that the set of genes whose promoters carry the motif in 
question display coherent activation patterns over the time-points of at least one experiment. 
The results have been compared to present knowledge and a few interesting conclusions have 
emerged: 1. many motifs can be clustered into groups that cover previously known TFBS. 2. 
single nucleotide changes in cores of clusters (cores are common substrings of motifs in the 
cluster) may turn out to be very meaningful, leading to different types of expression behavior. 3. 
novel motifs and novel clusters were uncovered. 
 



TFBS are the analog of words in promoter application. However other similarities to words in a 
human language disappear. First and foremost is the fact that words do not show up continuously 
along the string of letters that comprise the DNA. They are interspersed by numerous strings of 
nucleotides that do not seem to have any particular ‘meaning’ that we are aware of. Moreover, 
there exist different TFBS that serve as binding loci for the same TF. Thus a ‘word’ is not unique 
and many motifs may have a similar ‘meaning’. Nonetheless the analogy with words holds as far 
as the MEX search is concerned: it has the capability of selecting motifs from strings of DNA that 
turn out to have important biological roles. 
 
Specific peptides 
 
The second biological application of MEX concerns the search for motifs on the amino-acid 
sequences (having an alphabet of 20 elements) of proteins. The biological question that is of 
interest is that of predicting the function of a protein from its sequence. This is conventionally 
done by relying on sequence similarity that is known to be a good predictor of functional 
similarity (Tian and Skolnick, 2003). Nonetheless it is of interest to find out whether there exist 
on the protein’s sequence strings of amino-acids, also known as peptides, which can indicate what 
its function is. 
 
The study by (Kunik et al., 2007) has answered this question affirmatively. It has applied MEX to 
a large set of proteins known as enzymes, derived from the Swiss-Prot database (release 48.3 in 
Oct 2005). The catalytic functions of enzymes are classified by the Enzyme Commission (EC) 
into a 4-dimensional hierarchy forming a tree that branches into 6 classes, many subclasses, etc. 
MEX was applied to over 50,000 enzymes. The resulting motifs were further filtered by the EC 
classification, leading to over 50,000 specific peptides (SPs), i.e. strings of amino-acids that 
appear only on enzymes within a particular branch of the EC hierarchy.   
 
SPs are the analog of ‘words’ on the amino-acid sequences of enzymes. They can serve as means 
for functional classification with a high degree of accuracy. On the training set they have 
coverage of 87% for the full EC number (4th level of the hierarchy) and 93% for the 1st EC level. 
Their accuracy on a test set is of order 84%. These very high levels mean that SPs can serve as 
agents for data mining of enzymes. An example of appearances of SPs on the sequence of an 
enzyme and their use for classification purposes is provided in Fig. 2. This is a screenprint of the 
webtool http://adios.tau.ac.il/SPSearch. 
 
The SP approach can be contrasted with other machine-learning approaches, such as  
classification by sequence similarity  (Tian and Skolnick, 2003) and a method representing 
proteins in a space spanned by indices referring to properties of the amino-acids on their chains 
(Cai et al., 2003). Such a comparison, based on linear SVM (Vapnik, 1995; Scholkopf, 1997) 
training and testing on the class of oxidoreductases leads to the conclusion that MEX motifs do 
better than the other methods (Kunik et al 2007). 
 
Another important fact about SPs is that many of them are responsible for the catalytic functions 
of enzymes. This can be established by searching for loci of active and binding sites on these 
proteins and finding out that a majority (65%) lies on SPs. Moreover, many SPs are observed to 
lie in three-dimensional pocket structures in which the active sites reside, even if these active sites 
are not located on these SPs. 
 
 
 
 



 
Discussion 
 
 
Taking a step backwards from the drawing-board to get a perspective of the biological scene, we 
should realize that cell functions are carried out by machines that involve many proteins as their 
building blocks. The proteins themselves are constructs of hundreds of amino-acids, but should 
perhaps be viewed as constructs of peptides connected by many amino-acids that are of secondary 
importance. Hence, if the amino-acids are the alphabet, the peptides should be the `words’, the 
proteins are the `sentences’ and the biological machines are the `paragraphs’ that are responsible 
for the cell function.  
 
But this is only one analogy - on the protein level. Other analogies may exist on the DNA level, 
as seen in our discussion of the transcription factor binding sites. DNA sequence data continues to 
present major challenges to the biological community. To put some of the challenge into formal 
linguistic context, one may say that the community is still trying to understand the syntax and to 
infer its semantic interpretation. There may be more interesting challenges for motif-extraction 
algorithms and/or grammar induction ones in these active research fields.  
 
In any case, it is worthwhile emphasizing again, that hereditary biology possesses linear 
structures (chains of nucleotides in chromosomes, chains of amino-acids in proteins) that are 
suggestive of linguistic interpretations. Moreover, these objects interact with each other in some 
temporal order that guarantees the unfolding story of the development of an organism and its 
daily routine. Thus the syntax within the linear structures plays an important role in the creation 
of the most important biological reality, life itself. In the examples discussed here we emphasized 
the results of one particular approach, based on ADIOS and MEX in trying to address some of the 
challenges in these fields. A survey of many other approaches is presented by Searls (2002). 
 
 
 
 
 
 
 
 
 
 



 
Figure 1 
 
 
 
 
 

 
Figure 2 
 
Figure legends 
 
1. An example of applying MEX to an artificial linguistic problem with strings presenting 
sentences in which all words were concatenated into a long sequence. The purpose of such an 
exercise is to see if MEX retrieves correctly words. In this example the word ‘was’ appeared in 
sequences (sentences) 1, 2, 4, 5 and 6. Sequence 3 contained a word in which ‘a’ followed ‘w’ but 
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did not continue to form the word ‘was’. Significance conditions are applied to the entry and the 
exit of the motif that is being tested. If they pass the set thresholds, the motifs are selected by 
MEX. 
 
2. A screen-print of the webtool http://adios.tau.ac.il/SPsearch demonstrating the search of 
Specific Peptides on the sequence of an enzyme, and the association of EC assignments with 
these SPs. 
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