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Abstract

Chromosomes and whole genomes go through a number of changes as they evolve
over time. These include large scale changes, such as inversions, translocations,
deletions and many more. There are also very low level changes e.g point mutations.
Our understanding of genome and chromsome level evolution is still rather limited.
In this paper, we study two approaches for understanding the relations between
genomes and chromosomes and compare the two. One is the ratio of synteny blocks
sizes among two genomes; the other is the so called k-mers distance.

We apply these methods to families of E. Coli species and Salmonella species
to understand the correlation between syntenic regions and k-mer distances and
discuss the advantage of using such methods over traditional ones - mostly time
complexity. In addition, we present two interesting methods that can be used with
k-mer distances. One is identifying chromosomes that are evolutionary close to
each other by calculating pairs of chromosomes that have very low distance between
them. The second is using k-mer distances to reconstruct phylogenetic trees.
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Chapter 1

Introduction

1.1 Motivation and Background

The phenomenon of Inversion Symmetry (IS) has recently been reevaluated and
established in [20]. This generalization of the 2nd Chargaff rule [19] implies that
the number of occurrences of any sequence S of length k on a chromosomal strand
is equal to the number of occurrences of its inverse (reverse-complement) sequence
Sinv on the same strand. Another way of stating the same fact is that the number of
occurrences of S on one chromosomal strand is equal to the number of occurrences of
S on the other strand provided both are being read along their own 5’ to 3’ directions.
It has been shown in [20] that this rule holds, within statistical significance, for large
k up to the k-limit KL which grows logarithmically with chromosomal length L.
Furthermore, KL values differ for different organisms due to the difference in their
length and the difference in their strand structure. Eukaryotes genome is linear,
meaning it has a beginning and an end unlike Bacteria genome strand which is
circular.

Here we create a measure of distance between chromosomes, within the same
organism or between different species. This is carried out by comparing frequencies
of all strings of the same length k on different chromosomes, summing over both
strands of each chromosome.

1.2 Existing Approaches

There are several approaches to finding similarities between two given strings that
consist of genomic data.

1.2.1 String Similarity and Blast Distance

This can be done by measuring the edit distance between two strings, or finding
the longest common substring between the sequences. The problem with such a
method is that the time complexity of these algorithms is very bad, especially if we
are trying to match long sequences such as genomic sequences.
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1.2.2 Statistical Similarity

This can be done by applying NLP techniques such as n-grams or word2vec. These
will provide statistical difference between the given sequences. This can be done by
learning the similarity between well known sequences. However, there are a lot of
possible sequences that can occur in real life sequences and training such data can
be a difficult task.

1.2.3 Biological Approach

This can be done by identifying similar biological sequences and applying this knowl-
edge on the given strings. The main problem with such an approach is that some-
times biological knowledge is missing, making it impossible to take it into account
in the computations.

1.3 Genomic Data

Genomic sequences may contain regions that are considered to have no significant
information. There are few examples of such regions. One example is a repeat
of CG or AT. Another example is low-complexity regions which are sub sequences
of biased composition. Ensembl reference genomes contain three types: masked,
unmasked and soft-masked. The unmasked version contains all repeats and low
complexity regions; Soft-masked replaces all repeats and low-complexity with lower-
case nucleutides to help identify these regions; masked replaces all repeats and low-
complexity with N.

Usage of each of these types can yield different results. The masked version
may ignore relevant data of the genome whereas the unmasked version may add
noise to the data set. It is recommended to use unmasked data when working with
alignments and therefore in our research we used unmasked versions (except in parts
where we explicitly mention otherwise).
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Chapter 2

Our Approach

We will focus on measuring k-mer distance between two species and using it to asses
the existence of reverse complement synteny blocks. Our approach consists of three
steps

• Calculating k-mer distance

• Calculating Synteny blocks

• Comparing k-mer distances with Synteny blocks

2.1 k-mers Distance

The term k-mer refers to all the possible substrings of length k that are contained
in a given string. Given a string of length l over Σ, the number of k-mers in it is
l−k+1. We define the empirical frequency of a specific k-mer in the string S as the
number of occurrences of the k-mer in S divided by l−k+1. We will use FS to denote
this frequency. Let us order the 4k k-mers in some canonical lexicographic order.
For a given S, we consider the 4k dimensional vector, where the i-th entry equals
the empirical frequency fS(ai), where ai is the i-th k-mer in the canonical ordering.
Such vectors of frequencies enable us to define a distance between k-mers of different
strings over Σ, even if their lengths are not the same. Let us distinguish between
distances defined on probabilities measured on a single strand of both sequences and
distances obtained from both strands.

Definition 2.1.1. Given a sequence S, let Fk(S) define the k-mer frequency over
the positive strand as

Fk(S) = (
fS(a1)

l − k + 1
,

fS(a2)

l − k + 1
, · · · , fS(a4k)

l − k + 1
) (2.1)

Similarly, the frequency vector of the inverse sequence is Fk(S).

Definition 2.1.2. k-mer Distance
Given two genomic sequences S1, S2. The k-mer distance between S1 and S2 is
defined as the l1 norm between the frequency vectors.

Dk
1(S1, S2) = E |Fk(S1)− Fk(S2)| = Σ4k

i=1|
fS1(ai)

l1 − k + 1
− fS2(ai)

l2 − k + 1
| (2.2)
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In the definition above we do not treat reverse complement k-mers - that is each
k-mer is on its own. Similar to the k-mer distance definition we will define the
reverse complement k-mer distance where each k-mer is counted with its reverse
complement k-mer. That is, concatenating the reversed complement sequence to
the original sequence and divide the counts by 2.

Definition 2.1.3. Reverse Complement k-mer Distance
Given two genomic sequences S1, S2. The k-mer reversed complement distance be-
tween S1 and S2 is defined as the l1 norm between the probability vectors.

Dk
2(S1, S2) =

1

2
Dk

1(S1 · S1, S2 · S2) =
1

2
E |Fk(S1 · S1)− Fk(S2 · S2)| (2.3)

Where S1 · S1 is S1 concatenated by its inverse sequence S1.

Let us define the k-mer distance ratio as:

∆k
k−mer(S1, S2) =

Dk
2(S1, S2)

Dk
1(S1, S2)

Note that the definition above is valid only if Dk
1(S1, S2) 6= 0.

2.1.1 The validity of the k-mer Distribution

The paper [20] suggests that given two sequences S1, S2 of length l1, l2 respectively,
the K-Limit of these sequences depends on the logk(min{l1, l2}), that is the dis-

tances are well defined if 4k << min{l1, l2}. Otherwise, 4k

min{l1,l2} −→ 0 and therefore
changing even half of one of the sequences value will not yield a sufficient difference
in the distance.

2.1.2 Calculating k-mer Distance

There are few approaches when it comes to calculating k-mer distances, the benefits
of each depends on the value of k. The number of k-mers grows exponential with
the increase of k; therefore if the value of k is small its better to use traditional
string algorithms. However, if k is big, its better to use distributed map-reduce
approaches. In our k-mer counting calculations we used the Jellyfish k-mer counter
presented by [13].

2.1.3 Time and Space Complexity of k-mer distance calcu-
lation

Let S1, S2 be sequences of length l1, l2 respectively and analyze the complexity of
calculating Dk

1(S1, S2) and Dk
2(S1, S2) distances. In order to calculate the k-mer

distribution for each of the sequences we must go through all l−k+1 k-mers. Using
a hash map to save the counts we can assume that each increment is an O(1). Hence,
calculating the k-mer distribution of S1 will cost us O(l1− k + 1) and O(l2− k + 1)
for S2. In order to calculate the k-mer distance between the two sequences, we
must compare their distribution vectors of size 4k each. Therefore the total time
complexity is

O(l1 + l2 − 2k + 2 + 2 · 4k) (2.4)
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The space complexity of this algorithm consists of saving a count map for each
of the k-mers for both sequences. This yields the space complexity of

O(2 · 4k) (2.5)

Note that the space complexity does not depend on l1 or l2 which is a strong
property of this algorithm. However, the time complexity depends both on l1, l2 and
on k. In 2.1.1, we require that 4k << min{l1, l2} and therefore we can assume that
the time complexity is O(l1 + l2) and the space complexity is negligible for lower
k values. Note that this algorithm can be easily converted to a distributed version
and reduce the time complexity even more.

2.1.4 k-mer Distance Values

Figure 2.1: K Value Implications

(a) Unrealized k-mers Percentage on
E. Coli (b) k-mer Distance VS. K

KL value for E. Coli is 7

First, note that the number of unrealized k-mers and the k-mer distance are mono-
tonically increasing with the value of k as seen in 2.1 and 5. The increase of the
number of zero k-mers may imply that the k-mer distance between two sequences
will decrease, however as shown in 2.1, it is the opposite. This can be explained
by the fact that the actual k-mers that do appear in each of the sequences are
different, making the counts vectors to differ. Furthermore, the k value controls
the complexity of the calculation. Larger k values tend to increase the calculation
time exponentially. The choice of k is therefore an important part of evaluating
the correlation. In [20] the authors state that the k-limit (the highest k for which
the inversion symmetry holds) is 0.7 ln(L) where L is the length of the sequence.
Specifically the k-limit of bacteria is around 7. This indicates that the choice of k
should be the k-limit. That is for species pair (S1, S2), the value of k should be
k = KL(min{L(S1), L(S2)}). In our case, k = 7.

2.1.5 k-mer Distance Properties

We will focus on the important properties of both the k-mer distance and the reverse
complement k-mer distance.

Theorem 1. For any two genomic sequences S1, S2

• Dk
1(S1, S2) > 0
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• Dk
1(S1, S2) = 0 if and only if Fk(S1) ∼ Fk(S2)

Proof. By the definition of Dk
1(S1, S2) it is easy to conclude that it is greater or equal

to 0. In order to prove the 0 case, assume by contradiction that Dk
1(S1, S2) = 0 but

Fk(S1) � Fk(S2). Since the two sequences are not equal, there must be at least one
k-mer count that is different between the two count vectors. Assume without the
loss of generality that it is the i-th k-mer. Therefore, | fS1

(ai)

l1−k+1
− fS2

(ai)

l2−k+1
| > 0 which

follows that

Dk
1(S1, S2) = Σ4k

i=1|
fS1(ai)

l1 − k + 1
− fS2(ai)

l2 − k + 1
| > 0

which is a contradiction. The other direction can be shown with the same method.

Theorem 2. For any two genomic sequences S1, S2

• Dk
2(S1, S2) > 0

• Dk
2(S1, S2) = 0 if and only if Fk(S1 · S1) ∼ Fk(S2 · S2)

Proof. The proof is based on theorem (1). Mark S1 · S1 as T1 and S2 · S2 as T2.
Therefore,

Dk
2(S1, S2) =

1

2
Dk

1(S1 · S1, S2 · S2) =
1

2
Dk

1(T1, T2)

which proves the theorem.

Another interesting fact about k-mer distances is that D2 is always smaller or
equal than D1.

Theorem 3. For any two genomic sequences S1, S2

Dk
2(S1, S2) ≤ Dk

1(S1, S2) (2.6)

Proof. Let S1, S2 be two sequences of length l1, l2 respectively. Now looking into the
frequency vectors of the k-mers we can see that

fS1·S1
(ai) = fS1(ai) + fS1

(ai) (2.7)

By the definition of D2 we can deduce that

Dk
2(S1, S2) =

1

2
E |Fk(S1 · S1)− Fk(S2 · S2)| =

1

2
Σ4k

i=1|
fS1·S1

(ai)

l1 − k + 1
−

fS2·S2
(ai)

l2 − k + 1
| (2.8)

Now using both (1) and (2) we can deduce that

Dk
2(S1, S2) =

1

2
Σ4k

i=1|
fS1(ai)

l1 − k + 1
+

fS1(ai)

l1 − k + 1
− fS2(ai)

l2 − k + 1
−

fS2(ai)

l2 − k + 1
| ≤

1

2
Σ4k

i=1|
fS1(ai)

l1 − k + 1
− fS2(ai)

l2 − k + 1
|+ |

fS1(ai)

l1 − k + 1
−

fS2(ai)

l2 − k + 1
| =

1

2
Σ4k

i=1|
fS1(ai)

l1 − k + 1
− fS2(ai)

l2 − k + 1
|+ 1

2
Σ4k

i=1|
fS1(ai)

l1 − k + 1
−

fS2(ai)

l2 − k + 1
| =

1

2
Dk

1(S1, S2) +
1

2
Dk

1(S1, S2) =

Dk
1(S1, S2)

(2.9)
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Where the first step is due to the triangle inequality and the last step is due
to the fact that summing all k-mers leads to the same result as summing over all
inverse k-mers, amounting to a different order of counting.

Remark 1. From the theorem above, we can deduce that 0 ≤ ∆k−mer(S1, S2) ≤ 1

Theorem 4. For any three genomic sequences S1, S2, S3

Dk
1(S1, S3) ≤ Dk

1(S1, S2) + Dk
1(S2, S3) (2.10)

Proof. Let S1, S2, S3 be three genomic sequences of length l1, l2, l3 respectively.

Dk
1(S1, S3) = Σ4k

i=1|
fS1(ai)

l1 − k + 1
− fS3(ai)

l3 − k + 1
| =

Σ4k

i=1|
fS1(ai)

l1 − k + 1
+

fS2(ai)

l2 − k + 1
− fS2(ai)

l2 − k + 1
− fS3(ai)

l3 − k + 1
| ≤

Σ4k

i=1|
fS1(ai)

l1 − k + 1
− fS2(ai)

l2 − k + 1
|+ Σ4k

i=1|
fS2(ai)

l2 − k + 1
− fS3(ai)

l3 − k + 1
| =

Dk
1(S1, S2) + Dk

1(S2, S3)

(2.11)

Theorem 5. For any two complete genomic sequences S1, S2 (containing only nu-
cleutides)

Dk−1
1 (S1, S2) ≤ Dk

1(S1, S2) (2.12)

Proof. Let S1, S2 be two genomic sequences of length l1, l2 respectively. Let us focus
on a specific (k−1)-mer and without loss of generality define it as ak−1i . Now, due to
the completeness of the genomic sequences, to expand this (k− 1)-mer to a (k)-mer
we have only 4 options with 4 kinds of nucleotides. That is

fS1(a
k−1
i ) = fS1(a

k−1
i ∪ A) + fS1(a

k−1
i ∪ C) + fS1(a

k−1
i ∪ T ) + fS1(a

k−1
i ∪G) (2.13)

Where ak−1i ∪ C is ak−1i concatenated with C. Therefore, the contribution of a
specific k-mer to the distance calculation is

fS1(a
k
i )− fS2(a

k
i ) =

{A,C,T,G}∑
n

fS1(a
k−1
i ∪ n)− fS2(a

k−1
i ∪ n) (2.14)

Using (2.13) and (2.13)

Dk−1
1 (S1, S2) =

4k−1∑
i=1

| fS1(a
k−1
i )

l1 − (k − 1) + 1
− fS2(a

k−1
i )

l2 − (k − 1) + 1
| ≤

4k−1∑
i=1

{A,C,T,G}∑
n

|fS1(a
k−1
i ∪ n)

l1 − k + 1
− fS2(a

k−1
i ∪ n)

l2 − k + 1
| =

4k∑
i=1

| fS1(a
k
i )

l1 − k + 1
− fS2(a

k
i )

l2 − k + 1
| =

Dk
1(S1, S2)

(2.15)

where the second step is due to the general triangle inequality and the fact that we
decreased the denominator.

10



Remark 2. Note that the completeness of the genomic sequences is necessary to
complete the proof. Here is a counter example. Assume the following genomic
sequences S1 = AAANNN and S2 = CCCNNN . For k = 3 the distance between
the two will be 1

4
+ 1

4
= 1

2
since l− k + 1 = 4. However, for k = 4 there are no valid

k-mers in both strings and therefore the distance between the two will be 0.

2.2 Synteny Blocks

Synteny blocks are genetic sequences on two species which consist of similar genes
with the same direction. Extraction of synteny blocks between two species can be
a complicated calculation. First, we need to extract the genes that appear on both
species and map their coordinates and only then try to find blocks that contain the
corresponding genes. In this paper, we will present a new method for assessing the
probability that two species have reverse complement synteny blocks.

Figure 2.2: Synteny Blocks Between E. Coli 0157-H7-EDL933 and E. Coli K12-
MG1655. The colors represent the Identity Percentage where red indicates high
percentage and blue indicates low percentage. The black colors indicate an inverted
identity, i.e. a reversed complement block

Definition 2.2.1. Synteny Blocks
Let (B1, B2) be blocks of bacteria genomes G = (G1, G2) respectively. (B1, B2) are
considered Synteny Blocks if there exists a group of genes (g1, g2, . . . , gm) that exists
on each of the blocks within the same order. We will consider the number m to be
the synteny number.

Note that synteny 0 indicates that there are no matching genes between any of
the species, and synteny number 1 indicates that there are no groups of genes that
appear consecutively in all of the species. Therefore, we will refer to the synteny
number to be greater than 1.

Definition 2.2.2. Inverse Synteny Blocks
Let (B1, B2) be blocks of bacteria genomes G = (G1, G2) respectively. (B1, B2)
are considered Reverse Complement Synteny Blocks if there exists a group of genes

11



(g1, g2, . . . , gm) that exists on one of the blocks and the group (gm, gm−1, . . . , g1)
exists on the the other block. gi indicates the reverse complement of the gene gi.

2.2.1 Finding Synteny Blocks

In order to find syntenic blocks we used the BLAST algorithm to identify local
alignments of sequences. The output of the BLAST algorithm are blocks of the
two input sequences that have good alignment, reflected through the BLAST score.
We used the R package OmicCircus by [8] in order to visualize synteny blocks
between species. From the BLAST output, we extracted the synteny blocks that had
identity percentage higher than 90% and calculated the sum of sizes of the synteny
and reversed complement synteny blocks, we marked these values as Lsynteny and
Lsynteny−rc, respectively.

2.2.2 Synteny Ratio

Similar to the k-mer ratio definition, we looked at the ratio between the synteny
blocks and the reverse complement synteny blocks. The synteny ratio represents
the fraction of synteny blocks that reversed their alignment from the synteny blocks
which kept their alignment. For example, if there would be no mutations between
two species, we should expect the synteny ratio to be 0 since the number of reverse
synteny blocks would be 0. Otherwise, if all the synteny blocks were reversed, we
expect the synteny ratio to be 1.

Definition 2.2.3. Synteny Length
Let B = (B1, B2, · · · , Bn) be the synteny blocks of species (S1, S2), and B =

(B1, B2, · · · , Bm) the reverse complement synteny blocks of species (S1, S2). We
define the synteny length and reversed complement synteny length of (S1, S2) as:

Lsynteny(S1, S2) =
∑
b∈B

∑
g∈b

|g|, Lsynteny−rc(S1, S2) =
∑
b∈B

∑
g∈b

|g|

We define synteny ratio to be

∆synteny(S1, S2) =
Lsynteny−rc(S1, S2)

Lsynteny(S1, S2) + Lsynteny−rc(S1, S2)

We will define synteny percentages for later analysis.

Definition 2.2.4. Synteny Percentage
Let (S1, S2) be two sequences.

Psynteny(S1, S2) =
Lsynteny(S1, S2)

max{l1, l2}

Similarly

Psynteny−rc(S1, S2) =
Lsynteny(S1, S2) + Lsynteny−rc(S1, S2)

max{l1, l2}

We will focus on analyzing the correlation between k-mer distances and synteny
sizes and the correlation between ∆k−mer(S1, S2) and ∆synteny(S1, S2).
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Chapter 3

Results

In our research we analyzed the correlation between the k-mer distance to synteny
blocks. Our data-set (3.1, 3.2) consists of 24 species of ecoli referenced from [12] and
15 species of Salmonella Enterica. Based on this data set, we computed pairwise k-
mer distance and reversed complement k-mer distance. Furthermore, we computed
the synteny blocks and reversed synteny blocks between each of the species pairs
and between the species.

Figure 3.1: E. Coli Species Data Set

E. Coli Species
Id Species Size(bp) No. genes Accession Number Reference
1 E. coli 0157:H7 EDL933 5,620,522 5,312 AE005174 [17]
2 E. coli 0157:H7 Sakai 5,594,477 5,230 BA000007 [7]
3 E. coli 0111:H- 11128 5,766,081 5,407 AP010960 [14]
4 E. coli O26:H11 11368 5,851,458 5,516 AP010958 [14]
5 E. coli 536 4,938,920 4,620 CP000247 [3]
6 E. coli 55989 5,154,862 4,763 CU928145 [4]
7 E. coli APECO1 5,497,653 4,428 CP000468 [11]
9 E. coli CFT073 5,231,428 5,339 AE014075 [24]
10 E. coli 0127:H6 E2348/69 5,069,678 4,554 FM180568 [9]
11 E. coli E24377A 5,249,288 4,749 CP000800 [18]
12 E. coli 0157:H7 EC4115 5,704,171 5,315 CP001164
13 E. coli ED1a 5,209,548 4,915 CU928162 [23]
14 E. coli HS 4,643,538 4,378 CP000802 [18]
15 E. coli IAI1 4,700,560 4,353 CU928160 [23]
16 E. coli K12 MG1655 4,639,675 4,149 U00096 [1]
17 E. coli K12 W3110 4,646,332 4,226 AP009048 [6]
18 E. coli B str. REL606 4,629,812 4,205 CP000819 [10]
19 E. coli S88 5,032,268 4,696 CU928161 [23]
20 E. coli SE11 5,155,626 4,679 AP009240 [15]
21 E. coli SE15 4,839,683 4,488 AP009378 [22]
22 E. coli SMS-3-5 5,215,377 4,743 AP009378 [5]
23 E. coli UMN026 5,324,391 4,826 CU928163 [23]
24 E. coli UTI89 5,179,971 5,021 CP000243 [2]
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Figure 3.2: Salmonella Enterica Species Data Set

Salmonella Enterica Species
Id Species Size(bp) Accession Number
1 S. Enterica serovar Typhimurium 4,951,383 ASM694v2
2 S. Enterica serovar Typhi 5,133,713 ASM19599v1
3 S. Enterica serovar Choleraesuis 4,944,000 ASM810v1
4 S. Enterica serovar Enteritidis 4,685,848 ASM950v1
5 S. Enterica serovar Gallinarum 4,658,697 ASM952v1
6 S. Enterica serovar Paratyphi A 4,585,229 ASM1188v1
7 S. Enterica serovar Newport 5,007,719 ASM1604v1
8 S. Enterica serovar Paratyphi C 4,888,494 ASM1838v1
9 S. Enterica serovar Paratyphi B 4,858,887 ASM1870v1
10 S. Enterica serovar Heidelberg 4,983,515 ASM2070v1
11 S. Enterica serovar Schwarzengrund 4,823,887 ASM2074v1
12 S. Enterica serovar Agona 4,836,638 ASM2088v1
13 S. Enterica serovar Dublin 4,917,459 ASM2092v1
14 S. Enterica serovar Montevideo 4,694,375 ASM18895v5

The sequences were taken from NCBI
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3.1 Correlation Between Psynteny and D1

We evaluated D1 and synteny sizes of all pairs from each species on k values from 1
to 10. On each k value, we ran PCA ([16]) and the Pearson correlation coefficient in
order to identify the correlation between the two measures. We expect that Psynteny

will have a strong correlation to D1 since both measures rely on the positive strand.

Figure 3.3: Psynteny VS. D1 (k=7)

(a) E. Coli (b) Salmonella (c) E. Coli and Salmonella

The arrows represent the principal components of PCA

As seen in 3.3, there is a strong correlation between D1 and Psynteny both on
E. Coli (a) and Salmonella (b) species. On (c) we can identify that there is no
significant correlation between E. Coli and Salmonella, as expected.

However, since D1 only addresses regular and not inversed synteny blocks, species
that are evolutionary close to each other that contain only mutual inversed syntenies
will still have a relatively large D1 value (further explained in 3.6).

3.2 Correlation Between Psynteny−rc and D2

We evaluated D2 and synteny sizes (both regular and inverse) of all pairs from each
species on k values from 1 to 10. On each k value, we ran PCA ([16]) and the
Pearson correlation coefficient in order to identify the correlation between the two
measures. We expect that Psynteny−rc will have a strong correlation to D2 since both
measures rely on both strands.

Figure 3.4: Psynteny−rc VS. D2 (k=7)

(a) E. Coli (b) Salmonella (c) E. Coli and Salmonella

The arrows represents the principal components of PCA

As seen in 3.4, there is a strong correlation between D2 and Psynteny−rc both
across E. Coli (a) and Salmonella (b) species. On (c) we can identify that there is
no significant correlation between E. Coli and Salmonella, as expected.
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3.3 Comparison between D1 and D2

As seen in 3.5, D1 has a better correlation with the Psynteny both on E. Coli and
Salmonella (see (a) and (b)) than D2. In addition, D2 distance has a better cor-
relation with Psynteny−rc than D1. This is expected since species that have larger
numbers of mutual inverted sequences will still lead to a high D1 as opposed to
D2 which takes into account these sequences. This leads to the conclusion that D2

distance is a better measure for evolutionary proximity than D1.

Figure 3.5: Comparison between D1 and D2 with Pearson Correlation

(a) E. Coli Psynteny (b) Salmonella Psynteny

(c) E. Coli Psynteny−rc (d) Salmonella Psynteny−rc

An interesting remark is the difference in the Pearson correlation between the two
species. On E. Coli, the Pearson correlation both on D1 and D2 is relatively similar
as opposed to the Salmonella Pearson correlation in which D2 Pearson correlation
gets stronger and D1 Pearson correlation stays almost the same. This can lead to
the conclusion that Salmonella species contain more inverted syntenies than E. Coli
that fails to be identified by D1.

Figure 3.6: D1 and D2 Correlation

(a) Average Synteny Ratio
(b) Pearson Correlation BetweenD1

and D2
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Figure 3.6a does prove that the average synteny ratio (defined by 2.2.3) is
higher in Salmonella than in E. Coli. This may be due to the actual species that are
part of the dataset or to the fact that E. Coli species evolutionary age is higher than
Salmonella. In addition, we evaluated the pearson correlation between D1 and D2,
as seen in 3.6b. The figure displays a very high correlation between the distances
on E. Coli and smaller correlation on Salmonella. Note that both correlations starts
a significant decrease when k reaches 6 which matches 3.5. Furthermore, note that
the correlation between D1 and D2 on Salmonella reaches 0.75 which indicates that
there are differences between the two measures. This led us to research the ratio
between the two that will be further discussed in section 3.5.

3.4 Correlation Between E. Coli and Salmonella

In order to verify our method we evaluated the correlation between the two species.
Since there is no actual biological correlation between the two species, we expected
to see no actual correlation within our method. As expected, we can see from 3.7
that there is no strong indication of correlation between the two.

Figure 3.7: E. Coli and Salmonella Pearson Correlation

3.5 Correlation Between ∆synteny and ∆kmer

We evaluated the k-mer ratio and the synteny ratio of all the pairs from the 2
species on k values from 1 to 10. On each k value, we ran a PCA in order to identify
the correlation between the two measures and calculated the Pearson correlation
coefficient. The result identifies a strong correlation between the two which indicates
that the k-mer ratio increases as the percentage of reversed complement synteny
blocks decreases. This can be explained by the fact that when the k-mer ratio
increases, it means that the size of synteny blocks is similar to the size of the
inversed synteny blocks (otherwise there won’t be a difference between D1 and D2).
As shown in 3.8, the E. Coli correlation is much stronger than the Salmonella
correlation. However, note that the synteny ratios in (a) are much smaller than in
(c).
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Figure 3.8: Synteny Ratio VS. k-mer Ratio

(a) K=7 E. Coli Synteny Ratio to
k-mer Ratio

(b) E. Coli Ratio Pearson Correla-
tion

(c) K=7 Salmonella Synteny Ratio
to k-mer Ratio

(d) Salmonella Ratio Pearson Cor-
relation

The arrows represents the principal components of PCA

3.6 Outliers

In our experiments, one pair of the species (K12-MG1655, K12-W3110) had a sig-
nificant difference in its k-mer ratio. As seen in 3.9 (a), D1 increases while the D2

distance stays the same and very close to 0. This leads the ratio to increase with the
increase of k. However, the synteny size does not change with k and is close to 0.6
percent of the whole sequence as opposed to the reverse complement synteny size
which is close to 0.1. The synteny blocks can be seen in figure 3.9 (b). Therefore,
the k-mer ratio is reaching 0 with the increase of k while the synteny ratio stays
the same. The fact that more than half of the sequences are synteny blocks is not
surprising since the species are genetically close to each other. This pair is an outlier
example, the k-mer ratio reaches 0 with the increase of k which may indicate that
there are not a lot of inversed syntenies. However, this is not true as most of the
syntenies between these species are inversed.

Figure 3.9: K12-MG1655 and K12-W3110 pair k-mer Analysis

(a) k-mer Distances Analysis
(b) K12-MG1655 and K12-W3110
synteny blocks
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3.7 Implications for Human Species

The results we presented in this paper anchor on the fact that E. Coli and Salmonella
species are bacteria in which most of their genome represents actual genes. There-
fore, the correlation between the k-mers distance ratio and the reversed complement
synteny blocks percentage can be explained by the fact that most of the k-mers rep-
resent genes; since genes determine the synteny blocks, the correlation is implied.
For other species like Eukaryotes, the evolutionary distance is larger and therefore
there are less reversed complement synteny blocks. This will cause the synteny ratio
to reach high numbers and will fail to detect reverse complement sequences. How-
ever, as part of analyzing the human data, we found some interesting facts that
are worth mentioning. We used the human chromosomes of hg38 and hg19 taken
from the UCSC genome browser and compared the k-mer and k-mer-rc distances
between the pairwise chromosomes.

3.7.1 What is considered a low k-mer Distance?

In order to achieve a measure of a distance which can be considered low we computed
D2 distances between hg38 and hg19. The distances between each chromosome to
itself within the other version can be thought of the error measure between the two
versions.

Figure 3.10: K=10 hg38 VS hg19 Masked D2 Heatmap

Figure 3.10 shows the distances between both versions on each of the chromo-
somes to itself with k=10 (the full heatmap is shown in 5.3). We can identify that
the maximum distance between relatively long chromosomes (1-10) is 0.024. There-
fore, we will consider a D2 distance lower than 0.024 to be a low k-mer distance for
k=10.

3.7.2 Low Distance Human Chromosomes

We compared both the masked version of hg38 chromosomes to identify what chro-
mosomes are considered to have low distance between them. From figure 3.11 there
are several clusters of chromosomes that have low distance between them.
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Figure 3.11: K=10 Human (hg38) Masked D2 Distance Heatmap

We specifically identified chromosomes 5 and 6 to have very small distance with
most of the k values. As seen in 3.12, the distance between the two chromosomes is
smaller than the low k-mer distance between hg38 and hg19 until k reaches 5. This
may be a good indication for the evolutionary similarity between two chromosomes.

Figure 3.12: Human (hg38) Masked Chromosomes 5-6 Distances
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3.8 Phylogenetic Tree Reconstruction based on k-

mer distance

By using k-mer distance we can reconstruct phylogenetic trees to identify phylogeny
between species. This can help in classifying species into their sub groups or under-
standing a different phylogeny based on k-mer distances. The benefit of using k-mer
distance similarity is time complexity. Other similarity algorithms are using string
similarity matching which can be expensive when using long genomic sequences.

In order to reconstruct a phylogenetic tree, we calculated the pairwise E. Coli
k-mer distance between all the species and based on that distance matrix we used
hierarchical clustering to build the tree.

Figure 3.13: K=7 E. Coli Phylogenetic Tree Reconstruction

Figure 3.13 shows the reconstructed phylogenetic tree from E. Coli k-mer dis-
tances. The cluster colors are selected by distance threshold, in this case 0.037. The
cluster groups (as shown in the legend) are manually added to help the assessment
of the clustering quality. In 3.14 there are two E. Coli phylogenetic trees presented
by [21]. Both trees are constructed using FFPs (feature frequency profile). The first
tree (A) is constructed with all features and as the author states, the tree is likely to
reflect phenetic relationships. The second tree (B) uses genomic features, not genes,
which is thus likely to reflect evolutionary history. The FFP method is similar to
our method, aside from including the reversed complement k-mers and using Jensen-
Shannon divergence instead of vector norm between the frequency vectors. Looking
at the cluster groups, we can identify that there is high similarity between our re-
constructed tree to the one suggested in 3.14. However, our tree is reconstructed
with k = 7 whereas the paper reconstructs their tree using features of length 24,
i.e. k = 24. Our selection of k = 7 is widely discussed in the previous sections
and correlates both with the length of the species sequences and with the quality
of the reconstructed tree. In 5.4 there is a side by side comparison between our
phylogenetic tree to the one in 3.14 (B).
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Figure 3.14: E. Coli Phylogenetic Tree from [21]. (A) is using all features without
any filtering and (B) uses genomic features, not genes to construct the tree
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Chapter 4

Conclusions

4.1 Conclusions

We have introduced measures of k-mer distances, and applied them to bacteria
and to human chromosomes. The two measures, D1 and D2 were compared to
synteny measures in bacteria. We identified a strong correlation between D1 to
regular syntenic regions and a strong correlation between D2 to regular and inversed
syntenies which indicates evolutionary similarity between two species. We argued
that the k-mer ratio is a good measure for identifying the existence of large inversed
syntenies.

Our method provides a good measure for similarity and is different from tradi-
tional similarity measures. Two important differences are that: A, the k-mer dis-
tances do not take into account prior knowledge such as genes and low-complexity
regions. B, the time complexity of using k-mer distances depends mostly on the
value of k while other similarity measures are at least quadratic in the length of the
genomic sequences. We have shown that for relatively low k values (depending on
the K-Limit), our method competes well with other methods.

Applying k-mer distance evaluations to human chromosomes we have argued that
chromosomes 5 and 6 display very small evolutionary distances. We suggest using k-
mer distances as the first step of evolutionary similarity assessment before applying
additional string matching algorithms. This can help pointing out sequences that
with high probability are not close to each other or identifying sequences that have
a large amount of mutual syntenies.
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Chapter 5

Appendix

5.1 D1 and D2 Distances are Monotonic

Figure 5.1 demonstrates both the monotonic property of the k-mer and k-mer-RC
distances and theorems 3 and 5 which indicates for any two given sequences S1, S2

Dk
2(S1, S2) ≤ Dk

1(S1, S2) and Dk−1
1 (S1, S2) ≤ Dk

1(S1, S2)

Figure 5.1: k-mer and k-mer-RC Distances VS K

5.2 D1 and D2 Distance Triangle Inequality

Figure 5.2 demonstrates triangle inequality property of the k-mer and k-mer-RC
distances and theorem 3 which indicates for any three given sequences S1, S2, S3

Dk
1(S1, S3) ≤ Dk

1(S1, S2) + Dk
1(S2, S3).
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Figure 5.2: D1 and D2 Distances Triangle Inequality

(a) K=8 E. Coli (b) K=9 E. Coli

5.3 Human hg38 VS. Human hg19 Distance Ma-

trix

Figure 5.3: Human hg38 VS. Human hg19 Distance Matrix (k=10)
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5.4 E. Coli Phylogenetic Tree Reconstruction Com-

parison

Figure 5.4: E. Coli Phylogenetic Tree Reconstruction Comparison (k=7)
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 תקציר

בעבודה זו חקרנו את הקשר בין מרחקי קמרים )מרחקים המוגדרים ע"י תדירות של תתי 

סדרות( לבין קטעים סינתניים )קטעים גנומיים המכילים מספר משותף של גנים(. הוכחנו 

לקיומם של קטעים סינתניים. הראינו שהיחס בין מרחק שמרחק קמרים קטן הינו מדד טוב 

הינו מדד יותר טוב מאשר מרחק קמרים המכיל רק  DNA-קמרים המכיל את שני גדילי ה

לקיומם של קטעים סינתניים. בנוסף, הראינו דוגמאות לכרומוזומים אשר מרחק  אחד גדיל

שחזור עצים  ונתנו דוגמא לשימוש במרחק זה לצורך הקמרים ביניהם קטן מאוד

 פילוגנטיים.
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