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Abstract 

In vitro neuronal networks are known to fire in Synchronized Bursting Events (SBEs), with 
characteristic temporal width of 100 ms. We treat these events as the principal data atoms 
of the network.  Applying SVD (or PCA) to the spatial information, i.e. activity of neurons 
per burst, we demonstrate characteristic changes that take place over time scales of hours. 
We consider this as evidence for synaptic plasticity. We discover clusters of SBEs in the 
reduced SVD space, representing behaviour of the experiments at different times. We find 
two interesting characteristics of SVD analysis of these data which may be helpful to future 
users of SVD and PCA. 
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1 Introduction 

We present new findings regarding neuronal network recordings utilizing SVD. In vitro 
neuronal networks were found to fire in Synchronized Bursting Events (SBE). Segev et al 
[2] found clusters of SBE, based on cross-correlations between their spatio-temporal 
patterns. We find new attributes of the SBEs utilizing SVD.  

Singular value decomposition (SVD) has become a common method for analyzing 
biological data [1,3,5]. In this work, the usage of SVD is identical to Principal Component 
Analysis (PCA). We apply it to data of several experiments carried out in the laboratory of 
E. Ben Jacob at Tel Aviv University. Recently, work by Segev [4] enabled long-term 
measurements of living in-vitro neuronal network. The networks exhibit SBE, a period of 
about 100 ms in which the entire network fires rapidly. Between SBEs neurons tend to fire 
little and sporadically. Therefore, the SBE is considered as the principal data-atom of the 
network. The bursts are presented as matrices of Neurons × time bins (N × t), see figure 1. 
 

 

 

(a)                           (b)  
Figure 1 Example of SBEs from an 
experiment in which 15 neurons were 
recorded. The SBE lasts about 50 ms. (a) 3 
different SBEs during 10 sec (b) A single 
SBE, time scale of ~50 ms. 
(Data derived from an experiment whose 
recordings started on 13/03/00) 
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(a)                                                                                 (b) 
Figure 2 The distribution observed in the space spanned by SVD components 2 and 3, of 
spatial information extracted from data that was recorded starting on 13/03/00. (a) SBEs 
from the first few hours of the experiment (b) SBEs from later hours. Stripes are visible in 
(a) but not in (b).  

As biological phenomena, SBE have variable durations and noisy temporal start points. In 
order to apply SVD, the data should be arranged in vectors of constant length, whose 
entries have the same functional meaning. Therefore, it is impossible to apply SVD to SBEs 
as they are, and some standardization process is needed. We chose to use the spatial 
information of the SBE, by summing them over the temporal dimension. We apply SVD to 
a matrix composed of such representations of all SBEs: [number of firings per neuron per 
SBE]  x  [neurons]. Our goal is finding some structure within the ensemble of SBEs. 
Therefore, we inspect the first principal components of SVD. These components are 
responsible for most of the variance in the SBE space, and therefore looking at them can 
reveal the main structures in the data, structures that in the original space might have been 
hidden in noise.  

2 New observations regarding the experimental data 

Analyzing the ensembles of SBEs with SVD, we discovered evidence for development with 
time. This development is of special interest, as a clue to the plasticity of in-vitro networks. 

2.1 SVD reveals network development 

Analyzing the data with SVD has revealed a pattern of stripes in the projection plot for 
SBEs from the first few hours of an experiment, but not from a later time (see figure 2, we 
will discuss the reasons for appearance of stripes in SVD projection plots in section 3). 
Clearly, the system has gone through some change. In order to investigate the nature of this 
change we created simulated data with the same distribution as the original data, but with 
no correlations between neurons. The distributions were calculated separately for the two 
data-sets, of earlier and later SBEs. Stripes appeared in all visualizations of SVD of the 
simulated data, meaning that it was not the difference in the distributions but the 
correlations in the data, which were responsible for appearance of stripes. Removing from 
the data some of the most active neurons has also made the stripes disappear.  
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The direction perpendicular to the stripes can be expressed as a vector in the space of 
neural activities. Looking at the component values we realize that the significant ones 
emphasize the difference between two key neurons. We hypothesized that stripes disappear 
when correlation evolves between these key neurons. Calculation of the Pearson correlation 
between these neurons in the earlier and later data-sets strengthens this hypothesis. Very 
low correlations were found in the earlier SBEs (and the simulated data), and higher 
magnitude correlations in the later SBEs. It can be claimed that these correlations can be 
found directly, with no need of the analysis with SVD. It is however the latter that pointed 
us to the right place to seek these correlations.  

2.2 New clusters are found with the use of SVD 

New clusters of SBEs were found using SVD, analysing the spatial information of a few 
experiments. Example of a projection plot that exhibits such clusters can be seen in figure 
3a. 

It is now possible to go back to the biological data and investigate what are the differences 
between SBEs that belong to different clusters. The three clusters in figure 3a (as well as 
clusters found for data from other experiments) were different in the mean firing rates of 
the neurons, the standard deviations of the firing rates and the mean SBE (see figure 3c). 
The most interesting difference, however, is the tendency of SBEs from different clusters to 
appear in different temporal experimental periods. The clusters allow segmentation of the 
experiment into three different periods (see figure 3b).  

We have demonstrated that the system changes with time in two independent methods, 
based on clustering, and on appearance of special patterns in SVD. It is hard to measure 
directly synaptic plasticity at a network level, but our findings clearly demonstrate it. 

3 New observations regarding the SVD method 

During our research we have reached some new understandings of the nature of SVD that 
may be of use to future users. The first is the appearance of a special pattern of stripes 
under certain conditions, and the second is the appearance of axis-like formations. 

3.1 Appearance of stripes in SVD visualization 

As stated in the former section, stripes appeared in SVD projection plots of data with low 
correlations, and a few key neurons (whose firing rate distributions had higher magnitude 
mean and standard deviation). In this section we will elaborate on the mathematical reasons 
for appearance of such stripes. 

SVD chooses eigenvectors (principal components) according to their eigenvalues. Once 
there are active neurons with low correlations between them, SVD may be expected to 
choose their difference as one of its leading components: 

Consider C = <(nα-nβ)^2>, which is the correlation that would correspond to a variable nα-
nβ. (The eigenvalue corresponding to C would be Cms *= , where m is the number of 
data points.)    

C = <nα^2> + <nβ^2> - 2 * <nα•nβ> 

If the first two terms are large, and the third term is small, C will have a large numerical 
value. Hence nα-nβ has high chance of being one  of the  leading  components, or  playing a 



 
 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

prominent role in some combination of the leading components. Since the first principal 
component has usually coefficients of the same sign, such a difference may be expected to 
appear in principal components 2 and 3. In our case this difference was a good 
approximation to a linear combination of principal components 2 and 3, hence stripes were 
visible in the plane spanned by these two components. The stripes reflect quantization of 
the values of nα-nβ, which is natural if the two variables have integer values. The fact that 
the stripes have some thickness is due to the contamination by small components of other 
neurons in the linear combination of principal components 2 and 3. 

We have verified that the stripes are due to the principal component selection of SVD using 
the following simple exercise. Using the two data sets of  figure 1, we have run separate 
SVD analysis on each, and then used the coordinates of the early data to draw the latter 
data and vice versa. It turned out that the first case was one that showed stripes and the 
latter case did not. Hence we proved that it was the  selection of  principal  components  by  
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Figure 3 (a) The distribution observed in the 
space spanned by SVD components 1 and 2, 
of spatial information extracted from data that 
was recorded on 27/08/00. Three groups are 
visually separable. For simplicity they were 
named: ‘A’, ‘B’ and ‘C’. 
(b) Distribution of SBE times on experimental 
scale. SBEs from cluster ‘A’ tend to appear in 
the beginning, changing to ‘B’, then to ‘C’  
(c) The mean SBE of each cluster, calculated 
after alignment of the middle of the SBE 
(point of maximal population activity). The 
activity is drawn as function of the neuron 
serial number. 

(a) 

(b) (c) 
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(a)                                                                                 (b) 

Figure 4 (a) Axis like formation in SVD 3-D projection plot (b) Drawing of the data in 
parallel coordinates: the values of the first 10 principal components for each SBE are 
plotted for each cluster separately.  Each point of (a) is described by a polygon in (b). (This 
analysis was performed on data derived from an experiment whose recordings started on  
3/10/00.) 
 
the early set of data that is responsible for stripe formation. Once again this fits the 
understanding that in the early data there was no correlation between the two key neurons, 
hence their difference turns out to be an almost pure linear combination of principal 
components 2 and 3. 

3.2 Appearance of an axis like formation in SVD visualization 

In some of our analysis, axis like formations appeared in SVD projection plots (for example 
see figure 5a). SBEs that lie on the different axes can be analysed separately, in order to 
understand the biological meaning of such patterns. Doing so, we found out that the three 
clusters of SBEs are orthogonal to each other, in the sense that in each group the SBEs are 
composed of firings of different neurons. 
Drawing the data in parallel coordinates [2] demonstrates that SBEs from different groups 
tend to express themselves in different principal components. The three clusters have 
therefore other dimensions that express their variance, but they appear as almost linear (and 
orthogonal) when plotted in the first 3 principal components. 

4 Summary 

We have demonstrated how SVD analysis of SBEs can lead to biological insights even 
when the analysis is based only on spike counts of neurons within the SBEs. This is 
sufficient to discover clusters of SBEs. Usually these clusters reflect grouping of SBEs 
according to the time periods in the experiment. Each such group may contain events 
produced during several hours of an experiment. 

Obviously changes in time should reflect underlying dynamic plasticity. It is only natural to 
assume that this plasticity occurs at synaptic levels, modifying the connectivity between 
neurons. In one experiment we were able to demonstrate this modification by comparing 
correlations between two neurons during different periods. The fact that these correlations 
should be investigated came about through the observation of stripes in the SVD analysis. 
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This phenomenon of stripe formation is an epiphenomenon, since, while giving an 
impression of clustering, it does not reflect clustering. Yet it played an important role in 
leading us to the conclusion that correlations should be looked at. 

We have emphasized two curious phenomena that we have encountered in SVD 
visualization. One is stripe formation, that we understand as due to the occurrence of 
strongly active neurons that are uncorrelated. Such neurons influence the choice of 
principal components in SVD, leading to stripes that are not clusters although they may 
look as such. The second is formation of linear clusters that look like orthogonal structures. 
Apparent orthogonality is due to true orthogonality: these clusters are characterized by 
activities of different neurons in each cluster. The difference in identity of neurons  leads to 
the expression of SBEs of different clusters by different principal components and, when 
viewed in a selected three-dimensional representation of all clusters, results in the apparent 
axis-like structure. 

All in all, SVD seems to be a promising method for analysis of this kind of data.  
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