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Abstract

We discuss novel clustering methods that are based on mapping data points to a Hilbert space
by means of a Gaussian kernel. The *rst method, support vector clustering (SVC), searches
for the smallest sphere enclosing data images in Hilbert space. The second, quantum clustering
(QC), searches for the minima of a potential function de*ned in such a Hilbert space.

In SVC, the minimal sphere, when mapped back to data space, separates into several com-
ponents, each enclosing a separate cluster of points. A soft margin constant helps in coping
with outliers and overlapping clusters. In QC, minima of the potential de*ne cluster centers,
and equipotential surfaces are used to construct the clusters. In both methods, the width of
the Gaussian kernel controls the scale at which the data are probed for cluster formations. We
demonstrate the performance of the algorithms on several data sets. c© 2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Clustering algorithms are part and parcel of the general topic of pattern classi*cation
[1]. We will look into clustering algorithms that are unsupervised and driven solely
by the information about the location of data in a Euclidean data space of dimension
d. A well-known algorithm for such a problem is the k-means algorithm [2], in which
one speci*es the number, k, of clusters, and proceeds to *nd a set of centers with
which points are associated according to their shortest distances. The algorithms that
we are going to discuss are non-parametric, i.e. the number of clusters is not speci*ed a
priori. They do, however, possess a parameter q that speci*es the distance �=1=

√
(2q)

that is being used to probe the system. In other words, the pattern of clusters is
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scale-dependent. As such they belong to a family of scale-space methods, such as the
clustering algorithm of Roberts [3].

2. Support vector clustering

In the support vector clustering (SVC) [4] algorithm data points are mapped from
data space to a high-dimensional Hilbert space using a Gaussian kernel. One looks then
for the smallest sphere in the Hilbert space that encloses the image of the data. This
sphere is mapped back to data space, where it forms a set of contours which enclose
the data points. These contours are interpreted as cluster boundaries. As the width
parameter of the Gaussian kernel is decreased, the number of disconnected contours in
data space increases, leading to an increasing number of clusters.

2.1. Cluster boundaries

Let {xi} be a data set of N points in Rd, the data space. A nonlinear transformation
� de*nes images of all data points in the Hilbert space. Limiting these images to lie
within a sphere of radius R and center a,

(�(xj)− a)26R2 ∀j
and searching for the smallest such sphere, can be achieved by a variational calculation
applied to the Lagrangian

L=R2 −
N∑

j=1

(R2 − (�(xj)− a)2)�j ; (1)

where �j¿ 0 are Lagrange multipliers. Setting to zero the derivative of L with respect
to R and a, respectively, leads to∑

j

�j =1 ; (2)

a=
∑
j

�j�(xj) : (3)

Using these relations we may eliminate the variables R and a, turning the Lagrangian
into the Wolfe dual form that is a function of the variables �j only:

W =
∑
j

�(xj)2�j −
∑
i; j

�i�j�(xi) · �(xj) : (4)

Following the approach of support vector machines (SVM) [5] one represents the
dot products �(xi) · �(xj) by an appropriate Mercer kernel K(xi ; xj), chosen here as
the Gaussian

K(xi ; xj)= e−q(xi−xj)2 (5)
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with width parameter q. This turns W into

W =
∑
j

K(xj; xj)�j −
∑
i; j

�i�jK(xi ; xj)= 1−
∑
i; j

�i�jK(xi ; xj) : (6)

This function is being maximized over the space of all �¿ 0 leading to two sets of
points, those for which �¿ 0, called support vectors (SV) and those for which �=0.
The latter lie within the sphere in Hilbert space, while the SVs lie on the sphere.
Hence the SVs will lie on cluster boundaries in data space while the other points will
lie within such boundaries.
The same Eq. (6) can be employed to solve a problem with soft constraints that

allow for outliers. In this case, the only diIerence is [4] that the Lagrange multipliers
have an upper limit �¡C. Asymptotically (for large N ), the fraction of points that
become outliers is p=1=CN . In other words, as C is being reduced, more and more
points are labelled as outliers. The latter are de*ned as those SV for which �=C,
hence they are also called bounded support vectors (BSVs).

3. Examples of SVC

3.1. Example without BSVs

The *rst example [4] is a data set in which the separation into clusters can be
achieved without invoking outliers, i.e., C =1. Fig. 1 demonstrates that as the scale
parameter of the Gaussian kernel, q, is increased, the shape of the boundary in data
space varies: with increasing q the boundary *ts more tightly the data, and at several q
values the enclosing contour splits, forming an increasing number of components (clus-
ters). Fig. 1a has the smoothest cluster boundary, de*ned by six SVs. With increasing
q, the number of support vectors increases.

3.2. Example with BSVs

Quite often clusters are not as well separated as in Fig. 1. Thus, in order to observe
splitting of contours, one must allow for BSVs. This is demonstrated [4] in Fig. 2a:
without BSVs contour separation does not occur for the two outer rings for any value
of q. When some BSVs are present, the clusters are separated easily (Fig. 2b).
In the spirit of the examples displayed in Figs. 1 and 2 SVC has to be used itera-

tively. Starting with a low value of q where there is a single cluster, and increasing
it, one expects to observe the formation of an increasing number of clusters, as the
Gaussian kernel describes the data with increasing precision. If, however, the number
of SVs is excessive, i.e. a large fraction of the data turns into SVs (Fig. 2a), or a
number of singleton clusters form, one should increase p to allow these points to turn
into outliers, thus facilitating contour separation (Fig. 2b). As p is increased not only
does the number of BSVs increase, but their inJuence on the shape of the cluster
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Fig. 1. Clustering of a data set containing 183 points using SVC with C =1. Support vectors are designated
by small circles, and cluster assignments are represented by diIerent gray scales of the data points. (a) q=1,
(b) q=20, (c) q=24, (d) q=48.

contour decreases. The number of support vectors depends on both q and p. For *xed
q, as p is increased, the number of SVs decreases since some of them turn into BSVs
and the contours become smoother (see Fig. 2).

3.3. The Iris data

SVC was tried [4] on the Iris data set [7], which is a standard benchmark in the
pattern recognition literature, and can be obtained from the UCI repository [8]. The
data set contains 150 instances each composed of four measurements of an Iris Jower.
There are three types of Jowers, represented by 50 instances each. Clustering of this
data in the space of its *rst two principal components is depicted [4] in Fig. 3. One of
the clusters is linearly separable from the other two by a clear gap in the probability
distribution. The remaining two clusters have signi*cant overlap, and were separated
at q=4:2; p=0:55 with four misclassi*cations.
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Fig. 2. Clustering with and without BSVs. The inner cluster is composed of 50 points generated from a
Gaussian distribution. The two concentric rings contain 150=300 points, generated from a uniform angular
distribution and radial Gaussian distribution. (a) The rings cannot be distinguished when C =1. Shown here
is q=3:5, the lowest q value that leads to separation of the inner cluster. (b) Outliers allow easy clustering.
The parameters are p=0:3 and q=1:0.
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Fig. 3. Cluster boundaries of the Iris data set analyzed in a two-dimensional space spanned by the *rst two
principal components. Parameters used are q=4:2; p=0:55. This resulted in four misclassi*cations.
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These results compare favorably with other non-parametric clustering algorithms:
the information theoretic approach of [9] leads to *ve misclassi*cations and the SPC
algorithm [10] has 15 misclassi*cations.

4. Scale space algorithms

For each point x in data-space one may de*ne the distance of its image in feature
space from the center of the sphere:

R2(x)= (�(x)− a)2 : (7)

This can be rewritten as

R2(x)= 1− 2
∑
j

�jK(xj; x) +
∑
i; j

�i�jK(xi ; xj) : (8)

Now note that one may de*ne the function

Psvc =
∑
j

�je−q(x−xj)2 : (9)

Because of its positive de*niteness it may serve as the analog of a probability dis-
tribution. Up to constants it is the complement of R2. The points x where it reaches
its local maxima are the locations of the minima of R2(x). The minima of R(x) are
diIerent from zero, since there exists no point in data space whose image in feature
space lies at a (this is proved in the next section). Nonetheless, minimal radius values
should correspond to centers of clusters. Hence, maxima of Psvc should be regarded as
such.
In the limit p → 1, Psvc is approximately equal to

PR =
1
N

∑
j

e−q(x−xj)2 : (10)

This last expression is recognized as a Parzen window estimate [1] of the density
function (up to a normalization factor). This is the probability distribution proposed
by Roberts [3], who suggested looking for its maxima to identify cluster centers. This
is known as a scale-space algorithm, providing for diIerent clustering solutions by
varying the scale q of the probability estimator.
Returning to SVC we note that, in the high BSV regime, the contours in data space

will enclose only a small fraction of the data, hence they should be regarded as cluster
cores. Such contours correspond to the condition Psvc =const: with the constant chosen
as the value of this function on a SV. It seems only natural to ask for the topographic
map of Psvc, with the cluster core boundaries providing one speci*c value on this
map. But then, in this high p limit, one may also look at the topographic map of PR

and obtain similar results. Thus, SVC-like clustering can be carried out directly with
the Parzen window estimator by looking for a density contour PR =const:; rather than
searching for maxima of PR.
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5. Wave-function representation of Hilbert space

The vectors �(xj) in the Hilbert space can be represented by wave functions

�(xj) ≡ ce−q(x−xj)2 ; (11)

where c is an appropriate normalization constant guaranteeing that

�(xi) · �(xj) ≡ c2
∫

e−q(x−xj)2e−q(x−xi)2 dx=e−q(xi−xj)2 ; (12)

thus realizing the representation of the dot product by the Mercer kernel.
The center of the SVC sphere a becomes

a=
∑
j

�j�(xj) ≡ c
∑
j

�je−q(x−xj)2 : (13)

Two interesting remarks can be made about this representation. First note that this sum
of Gaussians cannot be represented by a single Gaussian, hence a cannot be the image
of a point that lies in data space. Then note that this representation of a coincides
(up to a constant) with the function Psvc. Thus, one may interpret R(x) as measuring
the distance between the wave function representing the point x and the probability
distribution of SVC.

6. Quantum clustering

Let us turn now to a new [11] clustering paradigm that starts with the scale-space
probability distribution and regards it as a state in Hilbert space

 (x)=
∑

i

e−q(x−xi)2 : (14)

This is a sum of all data images in Hilbert space of SVC. Now we proceed to search
for a Hamiltonian for which this state is an eigenstate:

H =
(
− 1
4q

∇2 + V (x)
)

 =E : (15)

Moreover, we will require it to be the lowest eigenstate, i.e., the ground state of the
operator H . Eq. (15) is a rescaled version of the Schr6odinger equation in quantum
mechanics. Thus a single data point at x1 leads to V = q(x − x1)2 and E=d=2, the
analogs of the harmonic oscillator problem in quantum mechanics.
Given any  we can solve Eq. (15) for V :

V (x)=E +
(1=4q)∇2 

 
: (16)

Let us, furthermore, require that min V =0. This sets the scale and de*nes

E=−min
(1=4q)∇2 

 
: (17)
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E is the minimal eigenvalue of V since  has no node, i.e. since  is positive de*nite
over the whole space. All higher eigenfunctions have nodes whose number increases
as the energy eigenvalue increases. It is quite easy to prove that

0¡E6
d
2

: (18)

Minima of the potential function V may be identi*ed with centers of attraction in
quantum mechanics, hence they are identi*ed here with centers of clusters. As will be
shown below this works remarkably well. Clearly, we have also here a sliding scale
determined by q. Setting this parameter means that we look for clusters on the scale
�=1=

√
(2q) in data space.

7. Examples

As an example [11] we display results for the crab data set taken from Ripley’s book
[6]. These data, given in a *ve-dimensional parameter space, show nice separation of
the four classes contained in them when displayed in two dimensions spanned by the
second and the third principal components (eigenfunctions) of the correlation matrix.
The information supplied to the clustering algorithm contains only the coordinates of
the data points. We display the correct classi*cation to allow for visual comparison
of the clustering method with the data. Starting with q=1, or �=1=

√
2, we see in

Fig. 4 that the Parzen probability distribution, or the wave function  , has only a
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Fig. 4. Ripley’s crab data [6] displayed on a plot of their second and third principal components with a
superimposed topographic map of the Roberts’ probability distribution for q=1.
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Fig. 5. Same data as in Fig. 4 with a topographic map of the potential for �=1=
√
2, or q=1, displaying

four minima (denoted by crossed circles) that may be identi*ed with cluster centers. The contours of the
topographic map are set at values of V = cE for c=0:2; 0.4, 0.6, 0.8, 1.

single maximum. Nonetheless, the potential, displayed in Fig. 5, shows already four
minima at the relevant locations. The overlap of the topographic map of the potential
with the true classi*cation is quite amazing.
As one increases q, or reduces �, more maxima appear in PR and more minima

appear in V . As long as the increase of q is moderate, the signi*cant minima of V ,
i.e. the deep minima, remain the same four minima displayed in Fig. 5. Maxima of PR

develop at all four cluster centers at q=4, but some of them are very weak. Thus, the
advantage of studying V is that it has robust low minima, and that they show up at
large � (low q) values that are characteristic of the scale of the clusters that are being
looked for.
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