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Abstract

We study some aspects of the dynamic neural .lter (DNF), a recurrent network that produces
spatiotemporal sequences in reaction to sets of constant inputs. The biological motivation for this
study came from the observation of spatiotemporal patterns in the locust antennal lobe. Some
of the aspects of these results can be reformulated and characterized by the DNF. Studying
deterministic dynamics we .nd di5erences between low and high numbers of neurons. For low
numbers there exists clear correlation between distances in input space and edit distances of
spatiotemporal sequences. For large numbers of neurons we observe divergence between close-by
spatiotemporal sequences. Nonetheless neuronal correlations survive for small changes in input
space.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

An interesting issue in neuroscience is the question of spatiotemporal coding. Its
existence has been demonstrated [7] in the locust olfactory system, where the spa-
tiotemporal behavior of projection neurons encodes the odor presented to its receptor
neurons. This transformation from odor-input to spatiotemporal activity occurs in the
antennal lobe, that is the .rst module of the olfactory system. This system may there-
fore be regarded as a dynamic neural .lter that turns spatial information distributed
over its many glomeruli, that are fed by the receptor neurons, to speci.c spatiotempo-
ral outputs. It is interesting to point out that, although this is a complicated biological
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system, it has an important simplifying feature that allows it to be represented by a
simpli.ed model of mathematical neurons, i.e. the fact that the activity of the projec-
tion neurons is limited to temporal bins de.ned by an oscillatory local .eld potential.
Hence a model with binary neurons obeying Hop.eld–Little dynamics [4] can pro-
vide a valid .rst-order approximation of the spatiotemporal behavior of the system.
We have presented this model in a previous work [6] and demonstrated how it can
be used to generate the spatiotemporal behavior of projection neurons observed by
Wehr and Laurent [7]. An extensive study of the model was presented in [5]. Here
we wish to expand on several aspects of the model that can be of particular interest
to computational neuroscience.

2. The dynamic neural �lter

The dynamics of the model has the following structure:

ni(t + 1) = H (hi(t + 1)) = H

(∑
j

wijnj(t) + Ri − 
i
)
; (1)

where wij is the synaptic coupling matrix, Ri is the external constant input (specifying
odor activation) and 
i is the threshold. H is the Heaviside step function taking the
values 0 for negative arguments and 1 for positive ones. For simplicity we choose wij
and Ri as integers, .xing 
i = 1

2 .
Consider the problem presented by Table 1, where we observe K = 6 series, repre-

senting the results of six inputs (e.g. odors), over T = 4 time steps in a problem of
N = 5 neurons. The .rst two neurons correspond to the observed ones of Wehr and
Laurent.
The modeler is challenged to .nd a matrix w and six input vectors R that solve this

problem. We have presented a solution to this problem in [5] based on the perceptron
algorithm. The principle is to generalize the N -dimensional neural space to an N + K
dimensional one, such that each one of the K series is presented by one 1 and K − 1
null entries in these new axes. In this new space we de.ne for each neuron i, a vector
of perceptron weights w̃i

(w̃i)j = wij for j = 1; : : : ; N; (w̃i)N+k = Rki − 
i for k = 1; : : : ; K: (2)

Table 1
Six spatiotemporal sequences de.ned for four time-steps in a system with .ve neurons

Time/code 1 2 3 4 5 6

1 1 1 0 0 0 1 0 0 0 0 1 1 1 0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0
2 1 1 0 0 1 1 1 0 0 1 1 1 1 1 0 1 0 1 0 0 1 0 0 0 0 1 1 1 0 0
3 1 1 0 1 1 1 1 0 1 1 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1
4 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0
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We assume that the K series start from an initial null state, and we use the percep-
tron algorithm to construct these vectors w̃i, whose (N + k)th component includes the
information about Rki .
Thus we obtain a synaptic weight-matrix, that serves to de.ne a dynamic neural .lter

(DNF), as well as K inputs that lead to the sequences of Table 1. But this can work
only if each column in Table 1 does not include repetitive states, and if no xor-like
contradictions of perceptron dynamics occur. If such situations occur we have to add
hidden neurons. In fact this is the case with the Wehr–Laurent series, described by the
.rst two neurons in Table 1. Since these sequences cannot be generated by an N = 2
DNF, we added three hidden neurons in the example of Table 1, leading to a system
that can be generated by a DNF. In general, for any problem of K binary sequences
with T time steps one can .nd hidden neurons that allow for a DNF representation. A
solution is guaranteed for high values of T and K if the total number N of neurons
(observed + hidden) obeys

N¿ 1
2 K(T − 2); (3)

which can be derived from the Cover limit [1].

3. Spatiotemporal distances

The DNF can be viewed as a generative tool for production of spatiotemporal se-
quences. Every such sequence can also be used to reconstruct a DNF that can serve as
its generator. This relationship can be exploited to serve as a measure in the generalized
space of all spatiotemporal sequences.
In [5] we have numerically studied an N =5 model and observed that, for a .xed w,

distances in R correlate well with edit distances in the spatiotemporal sequence. This
is easily demonstrated in Table 2, using a binary representation for every state of the
sequence in the form 1 +

∑N
i=1 ni2

N−i. These states are then represented by numbers
ranging from 1 (the null state) to 2N when all neurons are active.

These sequences are generated by changing one R value. The initial state was always
chosen to be the null state. Note that this set of sequences contains several 5-cycles.
This is to be expected from a synaptic matrix that is asymmetric, i.e. far from being

Table 2
A list of six neighboring sequences in a system with .ve neurons, displayed over seven time steps

t = 0 1 2 3 4 5 6 7

1 17 22 6 8 3 17 22
1 17 22 14 8 3 17 22
1 17 22 14 16 3 17 22
1 17 30 16 3 17 30 16
1 25 30 16 3 17 30 16
1 25 30 16 11 3 17 30
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either symmetric or antisymmetric. Asymmetry may be de.ned by the parameter � =
tr(w · w)=tr(w · wT) whose extreme values 1 and −1 correspond to full symmetry or
antisymmetry, respectively. The matrix that has generated Table 2 and, incidentally,
provides a solution to the problem of Table 1, has � =−0:41. Large cycles are to be
expected when � ≈ 0 [3].

So far we have discussed examples with small numbers of neurons. It is of interest
to ask what happens if the number of neurons in our system is higher, e.g. N = 50.
Investigating such a system with � ≈ 0 we .nd that close-by R values can generate
divergent spatiotemporal sequences. In one such example, we varied R1 and produced
27 di5erent sequences that were tested over 1000 time steps. None of the sequences
has shown any periodicity within this large range. Moreover, two sequences generated
by neighbors in R space, coincided for several tens or hundreds of time steps until
di5erent states appeared. From this point onwards the states in the two sequences
formed completely disjoint sets, i.e. complete divergence of the sequences occurred.
Obviously, there seems to be a large di5erence between small and large N values.

This is due to the fact that the space of all available states increases exponentially
as 2N . Hence, for large N , once a change occurs in some state in the sequence, it
becomes almost impossible to return to the original sequence.

4. Neuronal correlations

It is interesting to note that divergence of spatiotemporal representations was ob-
served experimentally by Friedrich and Laurent [2] in the olfactory bulb of zebra.sh.
The authors have studied the response of this system to similar odors, characterized by
small changes in molecular structures of the relevant chemicals. One of their interesting
results is that the correlation between temporal patterns of similar odors over the mitral
cells reduces with time (between the .rst and second 500 ms after odor presentation).
This leads us to wonder whether in our large N system we can .nd transitions in
time from large to medium correlations, rather than abrupt transitions from equality of
sequences to maximal inequality.
The answer is aJrmative. To understand it we have to realize that the relevant

volume of R space is limited by constraints [5]

−
∑
j

wijH (wij)6Ri6−
∑
j

wijH (−wij) + 1: (4)

Outside this range the dynamics become trivial because the input determines directly
the neuronal values. The center of R space is the region where the system leads to
large cycles (provided w is asymmetric) and where the chaotic-like phenomena of
total divergence occur. As we move out of the center of this space, small changes in R
may lead to a divergence, but .nite correlations survive. An example of this behavior
is shown in Fig. 1 which describes the Hamming distance between two neighboring
sequences, that were generated by R values o5 the center, in an N =40 problem. Once
divergence occurred, none of the states in one system appeared in the other, nonetheless
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Fig. 1. Hamming distance between two neighboring sequences, in an N=40 problem, plotted vs. the temporal
evolution of the sequences.

a .nite correlation survived as indicated by the fact that the mean Hamming distance
is around 12 and not 20, the number expected if no correlation had survived. In the
olfaction problem, small changes in R may be thought of as small changes in the
type or concentration of odor. We may then expect the latter to be traceable through
neuronal correlations even if their spatiotemporal patterns look quite di5erent.

5. Summary

We saw that the DNF can serve several purposes. For low N values it serves as
a simple model for generating a set of binary spatiotemporal sequences. Any given
set can be accommodated by a DNF. The latter can be explicitly constructed using
a generalized perceptron rule, but may necessitate invoking hidden neurons. For large
N , the DNF can be used as a simple testbed for discussing experimental observations
of neuronal correlations in an almost chaotic regime. Both cases were exempli.ed by
results of spatiotemporal behavior observed in olfaction.
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