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We study the K~tler-Dirac equation which linearizes the laplacian on the space of antisymmetric tensor fields. In flat 
space-time it is equivalent to the Dirac equation with internal symmetry and on the lattice it reproduces Susskind fermions. 
The KD equation in curved space-time differs from the Dirac equation by coupling the gravitational field to the internal 
symmetry generators. This new way of treating fermionic degrees of freedom may lead to a solution of the generation 
puzzle but is in conflict with the equivalence principle and with Lorentz invariance on the Planck-mass scale. 

In the early 1960's, the mathematician E. Kfihler 
[1] introduced a transcription of  the Dirac equation 
as a set of  equations for antisyrrimetric tensor fields. 
This K~ihler-Dirac (KD) equation has been largely 
ignored by physicists, but has recently been studied 
by several authors in connection with lattice fermions 
[2,3]. Indeed, as we will show below, KD fields are 
a natural framework for understanding Susskind's [4] 
lattice fermions. Moreover, the KD equation may be 
generalized to any riemannian or pseudo-riemannian 
manifold. This was shown by Graf  [5] who suggested 
that KD fields might be more fundamental than Dirac 
spinors. This is an appealing idea because it conforms 
to Einstein's philosophy of associating all physical 
fields with geometrical objects. It has one immediate 
consequence that we are familiar with from lattice 
models: the appearance of  replicas of  spinor fields 
with identical quantum numbers. 

We take up the idea that  K~ihler's geometric fer- 
mions are the fundamental  fermi fields, and investi- 
gate the possibility that the replication is associated 
with the generation structure of  the fermion spectrum. 
We show that the KD equation in a gravitational field 
deviates from the conventional generalization of the 
Dirac equation and argue that  it may play an impor- 
tant role in fLxing the fermion mass matrix. The KD 
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equation leads to the breakdown of Lorentz invariance 
on the scale of the Planck-mass where gravitational 
quantum fluctuations become important .  

The KD operator  on an n-dimensional riemannian * 1 
manifold with metric guy operates in the space of  all 
covariant antisymmetric tensor fields Au 1 u 
( p = 0 , 1 ,  "'" P ..., n), for which we adopt  the mathemati-  
cians' nickname "differential forms". Tensors of rank 
p are called p-forms. 

I f  co= (A ,Au ,Aulu2  .... ,Au~...Un) is a form, the 
generalized cud operator  d is de f inedby  

= ( 0 ,  OuA, ~ulAu2 - ~u2Aul . . . . .  
i 

dco 

(-1)'~a..1A.. ~ ), (1) 
cyclic ... # ~rn 
permutation 

and (minus) the generalized divergence, d +, by 

-d+co=(AV, AVu . . . . .  AVul . . .Un_l ,0 ) ;v .  (2) 

I f  we introduce the scalar product  

1 (~'A, ~B)=fdnxv~ ~. A"~"'"PB~,~...,p, (3) 
p 

* 1 The restriction to riemannian manifolds is not essential. 
On a pseudo-riemannian space the KD operator D will 
be hermitian rather than anti-hermitian. 
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then it is easy to verify that d and d ÷ are mutually 
adjoint, as our notation suggests. In terms of  d and 
d + the laplacian is [6] 

A = - r id  + - d+d .  (4) 

Since d 2 = d +2 = 0 we can write this as 

A = (d - d+) 2 = D 2 . (5) 

D is thus a natural square root of  the laplacian and we 
are led to suspect a connection between the KD equa- 
tion .1 

(d - d +) co = mco (6) 

and the Dirac equation. 
To make the connection, let us specialize to an 

euclidean space with cartesian coordinates x u and 

introduce 7 matrices as the irreducible representation 
of  the Clifford algebra 

7u7 v + % 7  u = 2 6 . v .  (7) 

Now we can form the matrix 

/,/ 

L ~(~)(X)= p=0 ~ P! ( ' }Y l""TUP)a#Au] ' ""p  (8) 

and check that 

" a q/U,~)(x)=,,,(D" 3'aa' u ~.~# )(x).  (9) 

Each column of ff can be thought of as a Dirac spinor 
so ff (and therefore co) represents a multiplet of  dege- 
nerate fermions (3 acts like an internal symmetry in- 
dex). 

In even dimensions the correspondence (8) is one 
to one only if we impose reality conditions on ~. The 
irreducible N = 2 n/2 dimensional representation of 
the ")'u is unique [7] and thus there exists a matrix M 
such that 

"/*u = M T u  M - 1  • (10) 

Since 6o is real ff satisfies 

q/* = M ~ M  -1  . (11) 

It thus h a s N  2 real parameters which is the same num- 
ber as in co. The components of  co can be recovered 
from ~ because the antisymmetric products of  7's are 
linearly independent. In odd dimensions the situation 
is slightly more complicated. Since there are two in- 
equivalent N = 2 (n -  1 )/2 dimensional irreducible re- 

presentations of the 7 u one has to use two indepen- 
dent ff's. 

The KD equation can be derived from a lagrangian 
provided the KD fields are interpreted as anticommut- 
ing variables. This establishes the correct spin-statistics 
relation for fermions. Using the construction of eq. (8) 
we find that in the massless case the lagrangian be- 
comes tr ~+ 7 u auto in euclidean space-time. It fol- 
lows that the theory is invariant under the symmetry 
operation 

-~ S ~ U  -1  , (12) 

where S is an element of  O(n) (the analog of  the 
Lorentz group in Minkowski space) and U is an ele- 
ment of U(N) an internal symmetry of  the N-fold 
degeneracy. U(N) has an O(n) subgroup and the ten- 
sor character of co reflects the transformations under 
the diagonal O(n) subgroup of both internal and ex- 
ternal O(n) rotations, i.e. ff --> S O S  -1  . 

The fermion multiplicity and mixing of  space-time 
and internal symmetries are reminiscent of Susskind's 
[4] lattice fermions. Indeed the KD equation can be 
discretized and its continuum limit involves no doubling 
of  the KD fields [2]. The lattice analog of  p-forms 
are functions defined on p-dimensional hypercubes 
(vectors = link variables, second rank tensors = plaquette 
variables, etc.). Let us associate each p-form with the 
geometrical center of  the p-cube on which it is defined. 
Form a new cubic lattice L from all points at which 
forms sit (fig. 1). L contains the lattice, the dual lattice 
and other points and its unit cell has volume 2 -n  in 
units of the original lattice spacing. The KD field co 
is just a point function X(x) on L and if co satisfies 
the massless KD equation (6) then X satisfies the 
Susskind equation 

% ( x ) [ x ( x  + u )  - x (x  - u)] = 0 ,  (13) 
# 

where 

o~ u = +1 VI otu = - 1  . (14) 
p l a q u e t t e s  

The massless case is of  particular interest because of  
the additional chiral invariance q/--> 3'sff of  the KD 
equation. Note that the equation possesses trivially 
the invariance under ~/--> ff 75 in any case. In four 
dimensions, where n = N = 4, we can use these two 
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Fig. 1. The forms (antisymmetric tensors) defined on a lattice 
are associated with theix corresponding geometrical counter- 
parts. The figure depicts the situation in two dimensions 
where the scalar, vector and pseudoscalar axe associated with 
the vertex, link and plaquette respectively. The components  
of the tensors can be regarded as elements associated with 
vertices of  a new lattice of  half the original spacing. The circle 
includes all elements of one qJ. 

different transformations to characterize completely 
the four different solutions to the massless KD equa- 
tion. Using the notation of differential forms one can 
show the equivalence 

~ 3335 ~ ¢, 6o ~ * ( - 1 ) P ( P -  1)/26o, (15a) 

~ 4"/5 ¢" 6o -* *(--I)P(P+l)/26O. (15b) 

where * is the (Hodge) duality operator [6], (15a) 
anticommutes with the KD operator of  eq. (5) while 
(15b) commutes with it. Eqs. (15) hold for any even 
number of  dimensions and can be used on curved 
manifolds as well. 

Before turning to curved space-t ime let us remark 
that the above discussion can be carried out also in 
Minkowski space although the notation is less natural 
because it involves a comparison of  an internal O(n) 
symmetry with an external O(n -1 ,  1) one. Thus in 
the n = 2 dimensional example (which we used in fig. 
1) we can construct 

q;=S+333uVu +i75 P (16) 

in euclidean space where all 333 are hermitian and all 
forms (S, Vu, euvP ) are real. In Minkowski space we 
find that the choice 

= iS + 7uV u + i75 P (17) 

(with 333 ° and 75 hermitian) guarantees that the equa- 
tions of  motion will be real; yet in order to have the 

proper lagrangian 

£ = tr q~+i3,03,uau¢ (18) 

we have to require, in the chiral basis, 

S* = V0, P* = - V  1 . (19) 

The trace in eq. (18) guarantees the expected internall= 
U(2) or 0(2)  symmetry yet  the result (19), while 
showing the correct number of  independent variables, 
exhibits an intricate admixture of  O(1,1) tensors. 

The most remarkable property of  the KD equation 
is that is is not equivalent to a multiplet of  Dirac equa- 
tions in the presence of  a gravitational field. Eq. (6) 
has the same form on an arbitrary curved manifold 
but eq. (8) is replaced by 

n 

p=0 ~" ~ ' " T a p e U l a l " " e U P a p A u l . . . U p ' ( 2 0 )  

where eU a is the local orthonormal frame eU a eV a 
= gUU. This implies that q~ transforms as a sum of 
antisymmetric tensor representations of  the local 
Lorentz gauge symmetry: 

eUa(X ) .+ Aab(X)eu b(X ) , 

~(x) ~ S(A(x) )~ (x )S - I (A(x ) )  , (21) 

rather than as a multiplet of  spinors as would be re- 
quired by the Lorentz invariance of  the massless 
Dirac equation: [8] 

"TeUa(~ u - iwubCObc)~ = 0 .  (22) 

Instead qJ satisfies 

~eUa(3 u ~b - iwubc [Obc , ~] ) = O, (23) 

which can be shown to be equivalent to (6) for m = 0. 
This equation implies a drastic revision of many 

of our ideas about fermions. It predicts a violation of 
the equivalence principle (in the sense that the ex- 
perimentally observed behavior of  fermions in a 
rotating coordinate system is not  equivalent to their 
behavior in a gravitational field) as well as a violation 
of Lorentz invariance in processes involving gravity. 
Concomitantly, it implies that gravitational effects 
can change the "internal" quantum numbers of fer- 
talons. Despite the strange nature of  these processes 
we believe that they occur with amplitudes that are 
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sufficiently small to have escaped experimental detec- 
tion. Work is in progress to study this question in 
greater detail. 

In curved space, the KD equation no longer de- 
couples into four (!n four dimensions) independent 
equations. Nonetheless the chiral transformation of 
eq. (15) can be deffmed in curved space as well and 
the massless KD lagrangian separates into a pair o f  
lagrangians for self-dual and anti self-dual forms .2 
In the fiat space limit each of these lagrangians de- 
scribes a pair of Weyl fermions, but in the presence 
of a gravitational field the two Weyl particles are 
coupled together. Thus the KD lagrangian forces us 
to a multiplicity of fermions which is not associated 
with an exact internal symmetry group. It is tempting 
to identify this multiplicity with the generation struc- 
ture of the observed spectrum of quarks and leptons 
(but one should keep in mind that the KD equation 
may be relevant only on the level of preons). This 
temptation is strengthened by the fact that if we add 
internal symmetry gauge fields to the KD equation, 
all of the Weyl fermions of the flat space theory have 
the same gauge quantum numbers. 

The identification of the KD multiplicity with gene- 
rations has a number of immediate consequences. 
Firstly since the KD multiplicity is even we should 
expect to discover at least one more generation. Second- 
ly generation mixing interactions would seem to be 
purely gravitational in origin. Local Lorentz invariance 
of eq. (23) seems to forbid asymmetric couplings of 
gauge or Higgs fields to the two Weyl fermions in a 
KD multiplet. This has implications for the mecha- 
nism that breaks the chiral symmetries which (we 
assume) prevent fermions from getting masses of 
O(1019 GeV). If the symmetry breaking mechanism 
is soft (as in technicolor) [9] gravitational corrections 
to the fermion mass matrix (and thus, in our scenario, 
all Cabbibo-Kobayashi-Maskawa angles) will be 
O(G~ 3/2 Mp2). On the other hand, if the symmetry 
breaking is due to the vacuum expectation value of 
an elementary scalar field ~b the radiative corrections 

.2 The transformation which commutes with the KD operator, 
eq. (15b), splits the KD lagmngian into two on the classical 
level. However, by analogy with what happens to U(1) chiral 
symmetries in gauge theories we suspect that a combination 
of anomalies and topologically non-trivial quantum fluctua- 
tions of the gravitational field might cause transitions be- 
tween the self dual and antiselfdual tensors. 

are ultraviolet divergent and (assuming a cutoff at 
the Planck mass Mp) we expect ~ m ~ ~bf(ln((b/Mp)). 
Finally, such a scenario would predict that all gene- 
ration mixing effects which are not attributable to 
the fermion mass matrix should be suppressed by 
powers of the Planck mass. 

The principal defect of this scenario is the lack of 
a general argument that guarantees that the mass 
matrix is Lorentz invariant. Quantum gravitational 
fluctuations break conventional Lorentz symmetry in 
the KD lagrangian. While most manifestations of this 
symmetry breaking are suppressed by powers of the 
Planck mass at low energies, the ultraviolet divergent 
corrections to the fermion mass matrix should be 
sensitive to it. Perhaps the answer to this puzzle lies 
in the detailed group theory of the chiral symmetry 
breaking mechanism, which we are far from under- 
standing at present. 

To conclude this note, we want to record our be- 
fief that the KD equation will find its most appropriate 
setting in the framework of Kaluza-Klein theories. 
Such a combination would be a completely geometric 
description of all fields and interactions. Note in this 
connection that the study of zero modes of the KD 
equation on compact manifolds is equivalent to the 
theory of harmonic forms, one of the classic problems 
of mathematics. A complete classification of these 
modes is known in terms of the topology of the mani- 
fold (de-Rham cohomology theorems) and we are 
guaranteed zero modes whenever some of the Betti 
numbers are non-zero [6]. This is in marked contrast 
to the Dirac equation which (for example) has no 
zero modes on any manifold with positive curvature 
[10]. Ultimately the reason for this difference is that 
the square of the KD operator is always the laplacian 
while this is only true of the Dirac operator in flat 
space. Thus, ironically, Dirac's hand waving derivation 
of his wave equation may be deeper than more sophis- 
ticated treatments based on the representation theory 
of the Lorentz group. 

We would like to thank Y. Aharonov, V. Kaplunovsky, 
G. Mack and S. Nussinov for numerous discussions. 
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