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ABSTRACT
Motivation: This paper introduces the application of a
novel clustering method to microarray expression data.
Its first stage involves compression of dimensions that
can be achieved by applying SVD to the gene–sample
matrix in microarray problems. Thus the data (samples or
genes) can be represented by vectors in a truncated space
of low dimensionality, 4 and 5 in the examples studied
here. We find it preferable to project all vectors onto the
unit sphere before applying a clustering algorithm. The
clustering algorithm used here is the quantum clustering
method that has one free scale parameter. Although the
method is not hierarchical, it can be modified to allow
hierarchy in terms of this scale parameter.
Results: We apply our method to three data sets. The
results are very promising. On cancer cell data we obtain
a dendrogram that reflects correct groupings of cells. In
an AML/ALL data set we obtain very good clustering of
samples into four classes of the data. Finally, in clustering
of genes in yeast cell cycle data we obtain four groups in a
problem that is estimated to contain five families.
Availability: Software is available as Matlab programs at
http://neuron.tau.ac.il/∼horn/QC.htm
Contact: horn@post.tau.ac.il

INTRODUCTION
Several authors have recently shown that, by using SVD,
one can extract biologically interesting results from the
gene/sample matrix X of microarray data. The relevant
formalism is analyzed in detail by Alter et al. (2000)
and will be outlined below. Similar approaches were used
by Rayachudhuri et al. (2000) and Holter et al. (2000).
The underlying idea is that the main features of the
data presented by a huge association matrix, such as the
gene/sample matrix in question, can be captured by a
highly compressed form of the matrix. This compressed,
or truncated, representation can be expressed in terms of
eigengenes and eigenarrays (Alter et al., 2000), that form
eigenvectors (of XT X and X XT respectively) with leading

∗To whom correspondence should be addressed.

eigenvalues. Thus, in the yeast cell-cycle data (Spellman et
al., 1998), one can trace the correct temporal behavior in
the relevant eigengenes.

We propose to use SVD in a different manner, as a
preprocessing step of a clustering algorithm. The idea is
that, rather than performing clustering on the initial data
presented by the gene/sample matrix, we compress it first
and perform clustering on the data as described in the
truncated space. This approach is based on the experience
gained in the community that studies texts using the
latent semantic analysis (LSA) approach (Landauer et al.,
1998). The truncated space, known as concept space in the
analysis of word/document association matrices, is known
to be better suited for information retrieval purposes
than the original matrix. Taking a similar attitude toward
the gene/sample association matrix, it seems plausible
that clustering after truncation should lead to meaningful
answers. A similar approach has been recently proposed
by Ding et al. (2002), who performed the clustering in
the truncated space using the k-means algorithm. We
perform this second stage of data analysis using the
recently proposed method of Quantum Clustering (Horn
and Gottlieb, 2002) and compare its results to k-means.

ALGORITHMS
Singular value decomposition (SVD)
Our study concerns an m × n gene/sample matrix X. Its
columns may be interpreted as sample vectors defined in
gene-space, and its rows are gene-vectors in sample space.
This matrix of rank k ≤ min(m, n) can be expanded into
a sum of k unitary matrices of rank 1:

X =
k∑

α=1

σαuαvT
α (1)

The two sets {uα} and {vT
β} α, β = 1..k, of column

and row vectors, respectively, are orthonormal sets. This
expression can be rewritten in the matrix representation

X = U�VT (2)
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where � is a (non-square) diagonal matrix, and U, V are
orthogonal matrices. Ordering the non-zero elements of
� in descending order, we can get an approximation of a
lower rank r to the matrix X by taking �r

j j = 0 for j > r ,
leading to the matrix

Y = U�r VT. (3)

This is the best approximation of rank r to X, i.e. it leads
to the minimal sum of square deviations

S =
m∑
i

n∑
j

(Xi j − Yi j )
2. (4)

Once we apply SVD to a given matrix X we automat-
ically define two spaces dual to each other. The matrix
U has orthogonal columns (eigensamples) that serve as
axes for representing all genes (rows of U ), while the ma-
trix V has orthogonal columns (eigengenes) that serve as
axes of a space representing all samples (rows of V or
columns of VT). Truncating these representations to di-
mension r , the gene-vectors (truncated rows of U ) and
the sample-vectors (truncated columns of VT) do not have
equal norms. This leads to a problem for the clustering
algorithm that is applied in these spaces since many vec-
tors accumulate around the origin. We employ therefore
rescaling of all vectors to unit length. In other words, we
project these vectors onto the unit sphere in r -space. This
approach is also consistent with the standard application
of LSA (Landauer et al., 1998), where similarity between
vectors in the truncated space is defined in terms of the
(cosine of the) angle, rather than the proximity, between
vectors.

In the following we provide two examples of clustering
in sample space and one example in gene space. In both
cases r is quite small, of order 4 to 5. This agrees with
the observation of Ding et al. (2002) who concluded that
the optimal r value should be of the order of the expected
number of clusters.

Quantum clustering (QC)
The clustering algorithm that we are going to use has been
recently suggested by Horn and Gottlieb (2002). It starts
out with a Parzen window approach, assigning to each
data-point a Gaussian of width σ thus constructing

ψ(x) =
∑

i

e
− (x−xi )

2

2σ2 (5)

that can serve (but for an overall normalization) as a
probability density generating the data. One then proceeds
to construct a potential function

V(x) = E +
σ 2

2 ∇2ψ

ψ
(6)
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Fig. 1. The potential function V generated from a set of 200 data
points using the parameter value σ = 1/2. In this non-optimal
case, two spurious local minima are generated in an otherwise well
clustered potential that separates into four valleys corresponding to
the four classes in the data. These classes are designated by different
symbols in the two-dimensional plane to guide the eye.

where

E = −min
σ 2

2 ∇2ψ

ψ
(7)

thus rendering V positive definite. In fact V has a global
minimum at zero, and grows as a polynomial of second
order outside the domain over which the data points are
defined. Within this domain, V develops minima that are
identified with cluster centers.

The intuition behind this approach is that this choice of
V is the correct one for the Schrödinger equation

Hψ ≡
(

−σ 2

2
∇2 + V(x)

)
ψ = Eψ (8)

whose solution (lowest eigenstate) is the probability
density ψ(x). In this equation, the potential function V(x)

can be regarded as the source of attraction, whereas the
first Lagrangian term is the source of diffusion of the
distribution, governed by the parameter σ .

In Figure 1 we present an example for such a potential
function generated from a set of data. The data come from
the crab data set of Ripley (1996) presented in a two-
dimensional subset of its principal components. These
data were used for demonstration of the QC algorithm by
Horn and Gottlieb (2002). The data are composed of four
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groups of 50 points each. The potential is plotted here for
the (suboptimal) choice of σ = 1/2, for which four major
valleys develop and two minor ones. For σ = 1 the minor
valleys disappear.

Once the minima of V(x) are defined as cluster centers,
the assignment of data points to clusters can proceed
through a gradient descent algorithm (Press et al., 1992)
allowing auxiliary point variables yi (0) = xi to follow
dynamics of

yi (t + �t) = yi (t) − η(t)∇V(yi (t)) (9)

that lead to asymptotic fixed points yi (t) → zi coinciding
with the cluster centers. In the example of Figure 1 three
of the 200 points fall into spurious local minima, whereas
all other points will be classified into relevant clusters with
a large degree of success. We refer to Horn and Gottlieb
(2002) for further explanations. It should be emphasized
that although a search is carried out here for the minima
of a continuous function V(x), which may be a complex
problem in high dimensions, it can in fact be simplified by
evaluating this function only at the data points (and their
gradient descendants V(yi )) which is sufficient to carry
out the algorithm of clustering.

Hierarchical QC
The QC algorithm has a free parameter σ that charac-
terizes the length scale over which we search for cluster
structures. Varying it from low to high values, we can get
anywhere from N clusters (where N is the number of data
points) to one cluster. The algorithm has to be applied ju-
diciously, e.g. by limiting oneself to a small number of
clusters that stays stable over a range of σ . It is however
important to realize that this algorithm does not guarantee
hierarchy, i.e. the assignments of data points to clusters
does not follow a tree, or dendrogram representation, as σ

is being varied.
We find it useful to define a modified version that

produces a hierarchical formulation in an agglomerative
manner. Starting out with very low σ , such that each
data point is a cluster of its own, we have the first
trivial clustering z1

i = xi . Then we increase σ by
some amount obtaining, after the QC gradient descent
algorithm, new clustering centers z2

i . Although there are
N values specified here, there should now be several
coinciding with one another, thus describing small clusters
with a few points in each. Let us now use z2

i as the data
points in our next stage of QC, after once again increasing
σ . This leads to a new set of cluster values z3

i . This
procedure is continued until large σ values are reached
with only one cluster. On the way it defines a dendrogram
whose clustering quality we may compare to biological
sample data. We call this method hierarchical quantum
clustering (HQC). It will be applied to the first of our three

examples. The second and third examples are analyzed
using QC with a judicial choice of σ to be explained
below.

RESULTS
We test our method on data from three different microar-
ray experiments in which the gene/sample classification is
known. In the first two cases we will discuss clustering of
cells, and in the third clustering of genes. In all three we
compare our clustering results with known classifications.

Cancer cells
The NCI60 set is a gene expression profile of 60 human
cancer cells using 9703 cDNAs representing approxi-
mately 8000 unique genes. NCI60 includes cell lines
derived from cancers of colorectal, renal, ovarian, breast,
prostate, lung and central nervous system, as well as
leukemias and melanomas. After application of selective
filters Scherf et al. (2000) reduced the number of gene
spots to a 1376 subset. We applied HQC to the data
points in an r = 5 eigengenes space. The obtained
dendrogram shows that most samples cluster according to
the cell/cancer type of the sample.

As can be seen in Figure 2, at σ = 0.2 one obtains many
clusters, some including just one sample, others having
2–4 samples. From this point on we increased the width
by dividing 1/σ 2 by a factor of 2 at each step of HQC.
Around σ = 0.5 one finds clustering into roughly the
groups described by the first letters designating the cancer
classes.

Let us use this example to explain the effect of the
projection onto the sphere in r -space, after applying SVD
to the data. We display in Figure 3 data of four classes of
cancer cells as they appear in two of the r = 5 truncated
dimensions before (open circles) and after normalization
to unit length. It is quite evident that this projection onto
the sphere is an important preprocessing step for any
clustering algorithm.

AML versus ALL
The second data set is taken from 72 leukemia patients
(Golub et al., 1999) with 2 types of leukemia called
ALL and AML. The ALL set is further divided into T-
cell leukemia and B-cell leukemia and the AML set is
divided into patients who have undergone treatment (with
an anthracycline–cytarabine regimen) and those who did
not. We obtain good clustering results, conforming to the
four classes of this problem. Here we applied QC directly,
without HQC, because we were not interested in any
dendrogram representation.

To describe the quality of the results we calculate, at
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Fig. 2. Dendrogram of 60 cancer cell samples. Clustering was
performed on a truncated 5 dimensional space. The first 2 letters
in each sample represent the tissue/cancer type.

each stage of σ , the Jaccard score

J = n11

n11 + n10 + n01
(10)

where n11 is the number of pairs of samples that appear
in the same cluster both according to the cell type and
according to our clustering algorithm, whereas n10 +
n01 is the number of pairs that appear together in one
classification and not in the other. This score should be 1
for perfect clustering and decrease as the clustering quality
decreases. The results of an r = 5 analysis, displayed
in Figure 4, show that the best performance is obtained
around σ = 0.5, which is where four clusters are the
preferred solutions of the QC algorithm. The clustering
itself is presented in Figure 5. The first two clusters are
the ALL B-cells and T-cells, where we have only 2 (out of
47) misclassifications †. We compare here the QC results
with a k-means analysis, which turns out to be worse. The
Jaccard scores are 0.72 for the best QC result (varying
over σ ) and 0.48 for the best k-means (varying over

† For extensive studies of this data set, including even better fits to ALL
B/T classification, see Lin and Johnson, 2002. Note that our successful
classification follows from an unsupervised clustering method.
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Fig. 3. Representation of data of four classes of cancer cells on two
dimensions of the truncated space. These data points (denoted by
star and by the relevant letters) are shown after the normalization of
each data point in r -space. The circles denote the locations of the
data points before this normalization was applied.
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Fig. 4. The Jaccard measure for the AML/ALL problem as function
of σ .

k and averaging over initial conditions). It can be seen
in Figure 5 that the k = 4 k-means analysis has one
quite empty cluster. Indeed, the best k-means results were
obtained for k = 3.

Yeast cell cycle
A famous benchmark is that of the yeast data of Spellman
et al. (1998), a case studied by several groups who have
applied SVD, as explained in the Introduction. Here we
wish to test clustering of genes, whose classification into
groups was investigated by Spellman et al. (1998). The
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Fig. 5. Clustering solutions for the AML/ALL problem using QC
with σ = 0.54 (upper frame) and k-means with k = 4 (lower
frame). The samples are ordered on the x-axis according to the
true classification into four groups, indicated by alternative gray and
white areas.
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Fig. 6. The five gene families as represented in two coordinates of
our r = 4 dimensional truncated space.

gene/sample matrix that we start from has dimensions of
798×72. We truncate it to r = 4 and obtain, once again,
our best results around σ = 0.5 where four clusters follow
from the QC algorithm. The original data were classified
by Spellman et al. (1998) into five classes, whereas we
obtained four. The resulting Jaccard score is 0.5. When we
group two of the five classes into one, the score increases

100 200 300 400 500 600 700

1

2

3

4

Fig. 7. Cluster assignments of genes for QC with σ = 0.46 as
compared to the classification by (Spellman et al., 1998) shown as
alternating gray and white areas.

to 0.54. In other words, the clustering and classification
have only partial overlap. In Figure 6 we display the
distribution of the five classes of data, as projected onto
two of the truncated r = 4 dimensions. Once again this
demonstrates how the processing via SVD and our sphere-
normalization allows for meaningful clustering of data that
are given in a high number (72) of dimensions. It also
gives some feeling as to the mixture between the classes.

The quality of clustering can be judged from Figure 7.
We see four cluster assignments of the genes that are pre-
sented in an order that preserves their original classifi-
cation into five groups. The fourth and fifth classes are
strongly mixed by QC. The same kind of mixing appears
also in k-means analysis. We obtained Jaccard scores of
0.5 for QC and 0.46 for k-means with k = 4.
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