
Chapter 11Collective Excitation Phenomenaand their ApplicationsDavid Horn and Irit OpherSchool of Physics and AstronomyRaymond and Beverly Sackler Faculty of Exact SciencesTel Aviv University, Tel Aviv 69978, Israel11.1 IntroductionSpiking neurons are highly non-linear oscillators. As such they display collectivebehavior that may have important calculational manifestations. Synchronization be-tween the �ring of di�erent neurons is the �rst topic to which we devote our attention.This behavior can be brought about in our integrate-and-�re model through excita-tory synaptic couplings without delays, or inhibitory couplings with delays. Oncethe mechanism of synchronization is established, this phenomenon can be used forde�ning data clustering. The clusters correspond to neurons that �re synchronously,with di�erent clusters �ring at di�erent times. This behavior can also be describedas temporal segmentation, separating data through phase lags between excitationsof di�erent aggregates. This separation is characteristically limited to a small num-ber of segments, a limitation that is inherent to the behavior of coupled non-linearoscillators. 1



The importance of synchrony as signifying binding, i.e. the belonging of neuralevents to one another and their joint formation of a consistent picture or concept, wasemphasized by von der Malsburg [von der Malsburg, 1981]. Experiments in the late80's [Eckhorn et al: , 1988, Gray et al: , 1989] showed the correlation of synchronyin the visual cortex with binding in the input scene. Taking it one step further,one may ask for the co-occurrence of several synchronized neuronal assemblies. Thiscould explain distributed attention [von der Malsburg and Schneider, 1986]. It wasstudied in various neural models [Wang, Buhman and von der Malsburg, 1990, Hornand Usher, 1991, Horn, Sagi and Usher, 1991] but has no experimental veri�cation.Employing quasi-local excitatory connections one can use these principles for im-age analysis. After covering cluster formations we turn to the use of an image asan external input to a two dimensional array of spiking neurons, and demonstratehow we can perform edge detection as well as scene segmentation. Finally, we studyspatio-temporal coherent phenomena that homogeneous neural systems may developby themselves. We show how solitary waves of spiking activity arise on neuronalsurfaces, and characterize their structures.In order to demonstrate the various concepts and phenomena we use our contin-uous version [Horn and Opher, 1997a] of integrate-and-�re (IAF) neurons, that werediscussed in section 1.2.3.3. of chapter 1. We employ a coupled set of di�erentialequations of two variables, as described in the next subsection.11.1.1 Two variable formulation of IAF neuronsThe two variables that we use to describe an IAF neuron are v, a subthresholdpotential, and m which distinguishes between two di�erent modes in the dynamics ofthe single neuron, the active depolarization mode and the inactive refractory period.They obey _v = �kv + �+ cmv +mI (11:1)_m = �m+�(m� v) (11:2)�(x) is the Heaviside step function. The neuron is inuenced by an external inputI, which is quenched in the absolute refractory period, when m = 0. Starting outwith m = 1, the total time derivative of v is positive, and v follows the dynamics ofa charging capacitor. Hence this represents the depolarization period of v. Duringall this time, since v < m, m stays unchanged. The dynamics change when v reachesthe threshold (that is arbitrarily set to 1). Then m decreases rapidly to zero, causingthe time derivative of v to be negative, and v follows the dynamics of a discharging2
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T I M E Figure 11.1: Dynamics of the single IAF neuron. The upper frame displays v, thesubthreshold membrane potential, as a function of time. The second frame showsm, the variable that distinguishes between the depolarization state, m = 1, andrefractoriness, m = 0. In the third frame we plot v+6f , where f is our spike pro�le,to give a schematic presentation of the total cell potential. Parameters for this �gureare: k = 0:45; � = �0:09; c = 0:35; I = 0:29.capacitor. Parameters are chosen so that the time constants of the charging anddischarging periods are di�erent.To complete this description of an IAF neuron we need a quantity that representsthe �ring of the neuron. We introduce for this purposef = �dmdt �(�dmdt ) (11:3)that vanishes at all times except when v arrives at the threshold and m changesrapidly from 1 to 0. This can serve therefore as a description of the action potential.An example of the dynamics of v and m is shown in Fig. 11.1. In a third frame weplot v + af , with a = 6, representing the total soma potential. The value of a is ofno consequence in our work. It is used here for illustration purposes only.This description can be readily extended to an array of pulse coupled neurons byreplacing Eq. 11.1 with_vi = �kvi + � + cmivi +mi(I + �jwijfj) (11:4)where i = 1; � � � ; N denotes the number of the neuron. Note that in this formulationthe interactions are instantaneous, and are quenched during the refractory period,3



whenmi = 0. It is straightforward to introduce neuritic time delays, e.g. by switchingfj = fj(t) to �fj = fj(t��) on the right hand side of this equation. One should notethat the spike, represented here by f , has some width of its own, so a small e�ect oftemporal extension is embedded automatically in the de�nition of our model.11.2 Synchronization of Pulse Coupled Oscilla-torsSynchrony of events is an intriguing physical phenomenon. The fact that most livingorganisms depend upon it for their survival makes it even more interesting. Synchro-nization plays an important role in many physiological activities including breathing,motor control and information processing in the central nervous system. It can alsooccur in biological environments that include many organisms such as groups of �re-ies that ash in synchrony or groups of criquets chirping in unison [Strogatz andStewart, 1993].Most biological systems that exhibit synchronization can be described as coupledoscillators, where the fully synchronized state is only one of many possible dynamicattractors. One can divide models of coupled oscillators into two kinds: phase coupled[Golomb et al: , 1992, Grannan, Kleinfeld and Sompolinsky, 1993, Terman and Wang,1995] and pulse coupled ones [Mirollo and Strogatz, 1990, Hop�eld and Herz, 1995,Johnson, 1994]. The latter reduces to the former in the limit in which every oscillatorcouples to a large number of others [Abbott and van Vreeswijk, 1993, Kuramoto,1990, Gerstner, Ritz and van Hemmen, 1993, Usher, Schuster and Niebur, 1993]. Wewill devote our attention to pulse coupled systems, analyzing cases of both small andlarge numbers of neurons.In this chapter we address collective activity in neuronal populations with vari-ous types of coupling. In this section, we concentrate on all-to-all couplings. Thiswill serve as the basis for understanding cases in which the synaptic couplings reectstructure in data or the geometry of a manifold to which neurons are attached. Athorough analysis of the large N limit of such systems is given in Chapter 10. Letus start with all-to-all excitatory couplings, a case studied by [Mirollo and Strogatz,1990]. They considered a population of N identical pulse coupled oscillators, fullyconnected by excitatory connections, without transmission delays and with no refrac-tory period. The state of the single oscillator is described by a monotonic increasingfunction of its phase, representing the integration that the membrane potential per-forms over its inputs. Once an oscillator reaches its threshold it emits a spike and is4



automatically reset to zero. Under the simple assumption that the monotonic func-tion is concave, the authors prove that for almost all initial conditions the neuronalpopulation will reach a stable synchronized state after a �nite number of time steps,for any value of N . In the case of inhibitory connections they show that for a systemof 2 neurons, the asynchronous solution is stable. Although they do not prove it for alarger system, this result is supported by numerical simulations and by other models,as will be shown below.The situation is quite di�erent when transmission delays are added to such amodel. Nischwitz and Gl�under [Nischwitz and Gl�under, 1995] report that, for awide range of parameters, transmission delays cause desynchronization. However, ifexcitatory connections are replaced by inhibitory ones, transmission delays inducesynchronization. Following a numerical study, they conclude that delayed local inhi-bition is the best scheme for spike synchronization. This conclusion agrees with [vanVreeswijk and Abbott, 1994], who studied a system of two integrate and �re unitsinteracting through a dynamic synapse described by an � function. They showedthat while the synchronous state is not stable for an excitatory synapse, it is stablewhen the synapse is inhibitory. In fact, the synchronous state is always stable whenthe synapse is inhibitory, although its domain of attraction shrinks as the interactionbecomes faster. In the excitatory case, the stable synchronous state is reached onlywhen the interaction is instantaneous.Whereas in our model synaptic response is instantaneous, and neuritic delays areintroduced at will, realistic models cope with both synaptic and neuritic temporalstructures, leading to various e�ects. As an example let us mention [Hansel, Matoand Meunier, 1995], who study realistic neural models using both analytic calculations(after reduction to a phase model) and numerical simulations. They di�erentiatebetween two types of responses to excitatory post-synaptic potentials (EPSP). In the�rst case, the EPSP advances the next �ring of the excited neuron. In the secondcase, it can either delay the spike or advance it, depending on the arrival time of theEPSP relative to the refractory period. A synchronized state is not stable in the �rstscenario1, while it can be stable in the second one, provided the synaptic interactionsare fast enough.The importance of the timing of a spike is further emphasized in the lockingtheorem of [Gerstner, van Hemmen and Cowan, 1996] (see section 10.2.5.2 ). It statesthe conditions for stability of the fully synchronous solution in a more complex case(the spike response model introduced in section 1.2.3.1 of chapter 1) that incorporatesthe form of the post-synaptic potential as well as axonal delays and refractoriness.1It may, however, be stable for instantaneous synapses.5



Collective �ring is shown to be stable if the �ring occurs while the post-synapticpotential is rising.In the more simplistic models, including ours, the general conclusion is that bothinstantaneous excitation and delayed inhibition can lead to synchrony. Instantaneousexcitation has the advantage that synchrony follows quickly once the interaction isstrong enough. In the case of delayed inhibition one has to �nd the correct windowof parameters and wait longer for synchrony to set in, but once it is obtained itis very stable. Recent studies [Crook, Ermentrout and Bower, 1997, van Vreeswijkand Hansel, 1997] have shown that synaptic adaptation has an interesting e�ect: itleads to synchrony of spiking neural systems in the presence of excitatory synapticinteractions with realistic temporal structures. Thus, once we allow for more elaborateinteractions, there exist many ways of inducing synchrony.We illustrate in Fig. 11.2 the build-up of synchrony in our system of IAF neurons[Horn and Opher, 1997a] for di�erent types of interactions. For all-to-all excitatoryinstantaneous couplings we display a system of neurons that starts out with randominitial conditions and turns, after four periods, into a synchronous system. Whenthe interactions are inhibitory, the system is periodic but asynchronous. Finally,inhibition with �xed transmission delays leads to the build-up of synchrony throughmerger of synchronous clusters.In discrete temporal simulations, there exists a subtlety regarding the exact up-dating scheme. One can either reset the IAF neuron to its rest state, no matter howmuch current it received before �ring, or to a higher value, if the input it receivedbefore �ring exceeded the amount it needed to reach threshold. When refractorinessis present, as is the case in our model, the situation is similar to the �rst updatingscenario. It becomes the only possible one, since current that arrives during andimmediately after the spike cannot drive the neuron to �re.Throughout this chapter we discuss systems of IAF neurons whose interactionsdepend on some underlying geometrical structure. Once we allow for deviations fromall-to-all couplings, new interesting phenomena develop. Hop�eld and Herz [Hop�eldand Herz, 1995] have investigated several types of models in which each neuron isexcitatorily connected to four nearest neighbors on a two dimensional grid. They�nd that all models exhibit rapid convergence to cyclic solutions, although not allsolutions are globally synchronous. Their two models of leaky IAF neurons reacheither global synchrony or a state of phased locked oscillations, i.e. a number ofsynchronized clusters of neurons, where the di�erent clusters are phase shifted withrespect to each other. Each cluster contains at least one triggering neuron and itsnearest neighbors. The authors show that the type of cyclic attractor depends on6
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11.3 Clustering via Temporal SegmentationClustering is an important concept in data analysis [Duda and Hart, 1973]. Whendata are presented in some given space one may follow any one of a set of parametricapproaches that exist in the literature. But if the space is very large, it is advantageousto concentrate not on the location of the data points but on the distances betweenthem. In that case an analogy with a neural system may suggest itself, associatingthe data points with neurons and the distances with synaptic interactions betweenthem. Such an approach was recently suggested in [Blatt, Wiseman and Domany,1997], where the authors have applied methods of statistical mechanics to such asystem, using the analogy of ferromagnetic interactions among spins. This leads toimpressive results for a host of problems where, as a function of one parameter, thetemperature, one can follow a tree of bifurcations into di�erent clusters.In the present section we demonstrate how a system of IAF neurons can be usedto perform such a task, relying on the fact that coupled IAF neural systems can ex-hibit staggered oscillations of neuronal cell assemblies. These assemblies are de�nedthrough the synchrony of their neurons, and we use them to represent clusters. Typ-ically we will be able to segregate data into sets of a few clusters in this fashion. Thelimit on the possible number of clusters will be discussed in the next section.Suppose we are given an N � N symmetric distance matrix, de�ned for N datapoints. For the solution of the clustering problem we have in mind, in which clustersare composed of groups of points, we de�ne a set of symmetric synaptic connectionsamong N IAF neurons, that are negatively correlated with distance. Thus shortdistances will imply strong excitatory interactions, and long distances may lead toinhibition. The neurons are assumed to be under the inuence of some common input,so that, in the absence of interactions, they will behave like free non-linear spikingoscillators. When the interactions are turned on we obtain, in general, staggeredoscillations of groups of neurons. These groups will be associated with the requiredclusters. To make sure that global synchronization will not be reached, competitionbetween the di�erent clusters can be induced by global instantaneous inhibition thatis proportional to the total spiking activity. This turns Eq. 11.4 into_vi = �kvi + � + cmivi +mi(I + �jwij �fj � �jfj): (11:5)In the presence of such global inhibition, classi�cation into clusters of roughly thesame size is favored by this method. In the example of Fig. 11.3 we see clusteringof 547 data points formed by slightly overlapping three gaussian distributions. Wehave used here inhibitory connections with delays (that lead to synchronization, as8
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hold. Examples of such problems were given in [Blatt, Wiseman and Domany, 1997].Clustering becomes a complex problem when the number of data points is large.An exhaustive search for solutions, e.g. seeking groups of points that obey the dis-tance condition, becomes computationally time consuming. Therefore one looks forheuristic methods to solve such problems. The advantages of our pulse-coupled sys-tem is that it relies only on distances between the points, it can be applied to problemsof arbitrary size, and it does not require preprocessing that is problem speci�c . Itsdisadvantages are that it naturally leads to a small number of clusters, e.g. 3 or 4,independent of the size of the problem, and it is biased toward clusters of the sameaverage size.11.4 Limits on Temporal SegmentationClustering was achieved in the previous section via temporal segmentation. The factthat this method leads to a small number of clusters is characteristic of non-linearoscillators that perform staggered oscillations (e.g. [Hansel, Mato and Meunier, 1995,Golomb et al: , 1992]). This is readily observed in associative memory systems thatare based on continuous oscillatory neurons [Wang, Buhman and von der Malsburg,1990, Horn and Usher, 1991]. These models provide temporal segmentation into 3to 6 components only. It is tempting to speculate that this feature could provide anexplanation [Horn and Usher, 1992] for the known limits on short term memory suchas Miller's 7� 2 rule [Miller, 1956].To understand why one obtains the limit on segmentation we have studied adynamical system composed of n continuous excitatory neurons interacting with oneinhibitory neuron [Horn and Opher, 1996a]. Here each neuron, or oscillatory unit,can be thought of as representing a cell assembly of spiking neurons.dUi=dt = �Ui +Mi � aM I � b�i + Ii (11:6)d�i=dt = Mi � c�i (11:7)dU I=dt = �gU I � eM I + fXi Mi (11:8)Ui, for i = 1; � � � ; n denote post-synaptic currents of excitatory neurons, whose average�ring rates are Mi = (1 + e��Ui)�1 (11:9)while U I and M I are analogous quantities for an inhibitory neuron that induces com-petition between all excitatory ones. �i are dynamical thresholds that rise when their10
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eFigure 11.4: A schematic representation of a model of identical excitatory oscillatorscoupled to an overall inhibitory unit.corresponding neurons i �re. They quench the active neurons and lead to oscillatorybehavior. a; � � � ; g and � are �xed parameters. To study segmentation we chooseIi = I as a common external input, in which case the system becomes fully symmet-ric under the interchange of any two neurons i $ j. A schematic representation ofthe model is displayed in Fig. 11.4.For a wide range of parameters this system can be shown to converge into limitcycles that include segmentation. However, full segmentation is obtained only upto n = 5. Above that, only partial segmentation can be obtained. An example ofthe latter is shown in Fig. 11.5. To understand why full segmentation cannot beobtained in this model for n > 5 we note that the overall period of the repeatingpattern, � , stays roughly the same, for all n. On the other hand a single oscillatorybeat cannot be too narrow. Technically the limit follows from an analysis of thesubharmonic oscillations of an excitatory unit in response to the input it receivesfrom the inhibitory unit, which oscillates at a higher frequency due to the inuence ofall other oscillatory excitatory units. Narrow subharmonic oscillations are restrictedto n � 5, thus providing the reason for the limit on full segmentation. Moreover,subharmonic oscillations of n = 3 are the most stable ones, which explains theirdominance in partial segmentation patterns such as the one shown in Fig. 11.5.This limitation can be overcome if one allows appropriate noisy inputs [Horn andOpher, 1996b]. We have worked with inputs of the type Ii = 0:4 + 0:1�i, where �iis a random variable between 0 and 1, that changes rapidly. For n = 3 this leads11



Figure 11.5: A quasiperiodic solution of the n = 8 problem that displays partialsegmentation. The eight M values of the di�erent oscillators are shown. The threelarge amplitudes form a segmented pattern, while the low amplitudes display verydi�erent periodicities.to a regular structure of full segmentation. The symmetry is obtained in spite ofthe random component in the input. The interesting e�ect of noise in this systemis to select full segmentation as the only surviving limit cycle. Increasing n to 4and more, we �nd that all symmetrical structures are broken. The general patternis one of approximate segmentation. For large n values (n > 5) simple noise doesnot induce full segmentation. There exists either large overlap between di�erentoscillators (degenerate segmentation) or partial segmentation in a very disorderedfashion. In order to obtain full segmentation one has to make sure that the (random)input a�ects no more than �ve oscillators at a time. We have therefore employed tworandom components. One assigns to each oscillator a random input, and the otherselects the �ve oscillators that are allowed to have their input active at a given time.The two independent random sequences are chosen to have rapid variations, i.e. timescales less than 0:1� . This type of input has a random Fourier decomposition. Theresults are displayed in Fig. 11.6. Segmentation is quite evident. The order of thedominant oscillators is random, yet, on the average, all oscillators are being excited.Our conclusion from this study is that for appropriate noise patterns, of the typedescribed above, segmentation can be induced for any number of oscillators [Hornand Opher, 1996b]. 12
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T I M EFigure 11.6: Staggered oscillation of the n = 8 problem is obtained for random inputswith rapid variation, a�ecting a few oscillators at a time. Activities of all oscillatorsare displayed as function of time.11.5 Image AnalysisAnalysis of a visual scene is one of the most di�cult tasks performed by animalbrains. It involves, among other sub-tasks, image segmentation, feature extractionand edge detection. Image analysis is also an important requirement of many arti�cialintelligence systems used in various �elds from navigation to medicine. Great e�orthas been devoted towards inventing good algorithms for image analysis. However, analgorithm that does not require preprocessing (i.e. one that is not image speci�c) ishard to �nd. Therefore, as is the case in other AI implementations, it might proveuseful to imitate biology, which is the best known performer of these tasks. Thiscould be done via the temporal binding hypothesis suggested by von der Malsburg in1981 [von der Malsburg, 1981, von der Malsburg and Schneider, 1986]. According tothis idea, activities of neurons that correspond to the same feature are synchronizedwhile representations of di�erent features are temporally decorrelated. There existsevidence that such a strategy may be employed by the brain [Eckhorn et al: , 1988,Gray et al: , 1989].Examples of the implementation of this idea in an oscillatory neural networkfor segmentation and binding exist in the literature [Wang, Buhman and von derMalsburg, 1990, Horn, Sagi and Usher, 1991, von der Malsburg and Buhman, 1992,Johnson, 1994, Ritz et al: , 1994, Horn and Opher, 1996a, Wang and Terman, 1997].All these models share some interesting features. One of these is the necessity ofcompetition between the di�erent oscillators, usually in the form of global inhibition,13



allowing only a small number of oscillators to rise simultaneously. Another commonfeature is the limited segmentation ability. In most models, only a small number ofobjects can be segmented. This ties in with the limit on temporal segmentation thatwe discussed before.11.5.1 Image segmentationThe phenomenon of clustering, and the fact that we have a neural computationalmechanism to achieve it, can be employed to perform image segmentation. For thispurpose let us embed IAF neurons on a regular two dimensional surface with openboundary conditions. Each neuron is being fed an input whose amplitude correspondsto the grey scale of a pixel of a given image. The problem of segmentation is to de�neclusters that represent di�erent objects in the image. The simplest way of clusteringis to rely on similarity in the grey scale within some given radius. Hence it is naturalto de�ne an input dependent interaction that leads to mutual excitations betweenneurons that receive similar inputs, and to mutual inhibition between those that havevery di�erent inputs. This can be achieved through the following choice:wij = F  11 + jIi � Ijj!�(dmax � dij) (11:10)F (x) = ( 2�2 (x2 � x�) x � �11�p� �px�p�� x � � (11:11)where � = 11+0:5(Imax�Imin) , and Imax;(min) are the maximal (minimal) pixel values ofthe image. The speci�c choice of x(Ii; Ij) and of F (x) is arbitrary [Wang and Terman,1997] as long as F is kept negative for large values of jIi� Ijj and positive for similarvalues of Ii and Ij. Our choice was inspired by the BCM model [Bienenstock, Cooperand Munro, 1982]. We �nd that using such a form of interactions contributes to thebinding of neurons that belong to the same object, thus improving segmentation ofdi�erent objects. An example is shown in Fig. 11.7, where segmentation of 4 objectsis obtained.This form of interaction is quite similar to the one used by Wang and Terman[Wang and Terman, 1997], who work with phase-coupled nonlinear oscillators. Theyname their model LEGION, implying local excitation and global inhibition. Sincea previous version of their model [Terman and Wang, 1995] leads to limited tem-poral segmentation, they have devised an algorithm that allows them to do muchbetter. In their model they have introduced complex lateral interactions that may14
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between two neurons is inversely proportional to their distance. Noise reduction isdone by changing the input to a neuron that is not synchronized with its neighbors.The amount of change depends on the time lag between the �rings of the neuron andthose of its neighbors. This method produces segmentation whose character changesduring the temporal development of the system. Moreover, it also leads to edge detec-tion. The edges of a segment are activated in the iteration that follows the activationof the segment, due to the linking between the perimeter neurons and their neighborsthat did not �re. Note that pulse-coupled networks are able to perform both segmen-tation and edge detection, whereas, so far, only segmentation was implemented byphase-coupled oscillators.11.5.2 Edge detectionThe problem of edge detection is complementary to that of segmentation. Whereassegmentation implies �nding areas that belong together, edge detection �nds theborderlines between such areas. Edge detection is an important task of image analysis.In various applications, such as in medicine, de�ning the boundaries of elements in apicture is crucial.To confront this problem we �nd it useful to start with synaptic couplings that arenot structured by the data. A good candidate is the di�erence-of-gaussians (DOG)interaction wij = CEe�d2ij=dE � CIe�d2ij=dI : (11:12)Here dij is the distance between two points and we have four constants denoting thestrength and radii of excitation and inhibition. Since the interactions are symmetric,it is only reasonable that the temporal evolvement of the spiking activity will reectasymmetries that exist in the input. We �nd, indeed, that when an image is used asan input then, after the �ring pattern settles into a periodic structure, edges can beread o� at minima of the total activity.An example of such behavior can be seen in Fig. 11.8, where the edges of mostshaded areas in a SPECT (single photon emission computed tomography) brainimage2 are detected, at time steps that correspond to minima of the total activity ofthe system. In this analysis we have not employed global inhibition and, therefore,we do not obtain temporal segmentation. At peaks of the total activity, many areasof the image will be active. Nonetheless, using the delineation of boundaries that isobserved at minima, we obtain a highly segmented picture.2 Image provided by I. Prohovnik, private communication16
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Figure 11.9: Two solutions with propagating spiking fronts (the grey scale is propor-tional to the strength of fi) on a 60� 60 grid using the same interaction parameters.(a) Periodic boundary conditions lead to parallel stripes. Frames (b) and (c) displaytwo snapshots of a solution corresponding to open boundary conditions. In (b) we seetwo arcs propagating from opposite corners, merging in (c) with fronts that started inthe other corners, to form a rectangle that eventually shrinks to the structure seen inthe center of (b). Interaction parameters are CE = 0:2; CI = 0:02; dE = 15; dI = 100,restricted to an area of radius 20 around each neuron. Other parameters are the sameas in Fig. 11.1.among the neurons, and starting from random initial conditions, this would lead torandom periodic behavior of the type of Fig. 11.2b. This changes once we introducean interaction such as in Eq. 11.12. For strong enough simultaneous excitations thesystem develops a coherent character, i.e. neighboring neurons become synchronized,thus leading to spatial order. The system turns then into a structured cyclic attractor.The details of the structure depend in a critical manner on the interaction parameters.In Fig. 11.9 we display results of propagating stripes, as well as formations ofmerging lines. When viewed at di�erent time frames one observes a homogeneousmotion of these structures. The two formations represent the same type of solution,namely propagating fronts. They were obtained with the same set of interactionparameters, but with di�erent boundary and initial conditions. The parallel stripesof Fig. 11.9a are the result of periodic boundaries and the merging lines of Fig.11.9b and c are the result of open boundaries. The latter cause the activity to startat boundary neurons, that receive less inhibition than others. The convergence ontoa speci�c solution depends on initial conditions of the complex nonlinear system. Thedistinction between solutions belonging to periodic or open boundary conditions isalways quite evident. 18



Rotating spirals and expanding rings are other types of solutions, that are wellknown examples of solitary wave formations [Meron, 1992]. Both formations are oftenencountered in 2-d arrays of IAF neurons [Jung and Mayer-Kress, 1995, Milton, Chuand Cowan, 1993]. An example of colliding rings is displayed in Fig. 11.10. Thisexample is obtained by keeping only few nearby neighbors in the interaction. Thenumber of expanding rings is inversely related to the span of the interactions. Wenote the spontaneous creation of two foci from which the expanding rings emerge.Spikes exists only at the boundary between m = 0 and m = 1 areas. This propertyreects the fact that for each neuron a spike is followed by a refractory period. It isresponsible for the vanishing of two �ring fronts that collide, because, after collision,there remains only a single m = 0 area, formed by the merger of the two formerm = 0 areas.
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fFigure 11.10: Collision of two expanding rings formed on a 60�60 grid. The topframes display m �elds at two time steps, with m = 0 in white and m = 1 in black.The bottom frames exhibit the corresponding coherent �ring patterns, that appear atboundaries between areas of m = 0 and m = 1. In this simulation we use excitatoryinteractions only, coupling each neuron to its 8 neighbors with an amplitude of 0:3.All these simulations are carried out on some �nite lattice, containing typically60� 60 IAF neurons. Once the system adapts to its coherent behavior, the structureof its underlying lattice becomes unimportant. In fact, it turns into a continuousproblem of interacting neural �elds. There is a topologic rule that we can deduce19
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Figure 11.11: Incoherent �ring patterns for (a) high variability of synaptic connec-tions, or (b) noisy input. In (a) we have multiplied 75% of all synapses by a randomgaussian component (mean=1., s.d=3.) that stays constant in time. In (b) we haveemployed a noisy input that varies in space and time (mean=0.29, s.d.=0.25). Inboth frames the �ring patterns are no longer coherent. We can see the formation ofsmall clusters of spiking neurons. The typical length scale of these patches is of theorder of the span of excitatory interactions. This is a manifestation of the dominanceof interactions in determining the spatial behavior in the absence of continuity thatimposes the topologic constraint.from this continuity. Once m(~x; t) is continuous, it has the same dimensionalityD (2in the cases discussed here) as the manifold to which the neurons are attached. Sinceall �ring formations occur at moving fronts of m(~x; t) = 1 patches, these solitarywaves have to be of dimensionality D � 1. This is well exempli�ed in Fig. 11.10. Itholds for all the coherent solutions that we obtain, arcs, spirals, stripes and expandingrings.We have obtained coherent solutions also when some forms of synaptic delays wereintroduced. Coherence can be broken by strong noise in the input or by randomnessin the synaptic connections. What we would expect in this case is that the DOGinteractions specify the resulting behavior of the system. This is, indeed, the case,as demonstrated in Fig. 11.11 which shows an irregular, but patchy, behavior. Thesepatches have a typical length scale that is of the order of the range of excitatory in-teractions. We believe that this is the explanation for the moving patches of activityreported by other authors [Hill and Villa, 1994, Usher et al: , 1994]. These are inco-herent phenomena, emerging in models with randomly distributed radial connections.20



We learn therefore that our model embodies two competing factors. The DOGinteractions tend to produce patchy �ring patterns, but the coherence, that is broughtabout by the excitatory connections, leads to the formation of one dimensional solitarywaves on a two dimensional manifold. If, however, strong uctuations exist, i.e. theneurons can no longer be described by homogeneous physiological and geometricalproperties, the resulting patterns of �ring activity are incoherent, and their spatialextension reects the range of the underlying interactions.Are there situations where coherent �ring activity exists in neuronal tissue? If theexplanation of hallucinatory phenomena [Ermentrout and Cowan, 1979] is correct,then this is expected to be the case. It could be proved experimentally throughoptical imaging of V1 under appropriate pharmacological conditions. Other abnormalbrain activities, such as epileptic seizures, could also fall into the category of coherent�ring patterns. Does coherence occur also under normal functioning conditions? Theinteresting spatiotemporal evoked activity, reported by [Arieli et al: , 1996] in areas17 and 18 in cat, may be due to underlying neurons that �re incoherently. But thethalamo-cortical spindle waves generated by the reticular thalamic nucleus [Golomb,Wang and Rinzel, 1994, Contreras and Steriade, 1996] may well be an example ofcoherent activity. Another example could be the synchronous bursts of activity thatpropagate as wave fronts in retinal ganglion cells of neonatal mammals [Meister et al: ,1991, Wong, 1993]. It has been suggested that these waves play an important role inthe formation of ocular dominance layers in the LGN [Meister et al: , 1991].11.7 The Importance of NoiseThe e�ects of noise, displayed in Fig. 11.11, are deconstructive, in the sense that noisecauses desynchronization and, therefore, eliminates the coherent behavior. However,desynchronization may also have useful aspects, as seen in section 11.4 and displayedin Fig. 11.6, where noise helped us to overcome temporal segmentation constraints.This observation goes back to [Horn, Sagi and Usher, 1991], where it was shown thatnoise can serve the binding process by forming a nucleation source for synchronizationof one segment. As such it can serve also in image segmentation analysis [Wang andTerman, 1997].It is interesting that, under certain conditions, noise can also be employed to allowfor solitary wave formation, rather than destroy it. This is the case in a dissipativeregime in which the IAF neurons do not have a constant input that keeps themoscillating, as already noted by [Jung and Mayer-Kress, 1995]. A one dimensional21



SPACE

TI
M

E

Figure 11.12: Space time description of coherent spiking activity on a one dimensionalneural manifold in a dissipative regime. The coherent propagation of excitation,induced by random inputs, is similar to what is observed in the oscillatory regime,except that it is not periodic and less frequent. Parameters are: w = 1:2 for 10neighbors on each side. I is normally distributed with mean and standard deviationof 0.02. Its values change at random time steps.example [Horn and Opher, 1997b] of such a system is shown in Fig. 11.12. Once aneuron �res, the spreading of activity depends on the situation of near-by neurons.If they happen to be in a refractory period, or under the inuence of small, or evennegative input, activation will not spread. However, once activation does spread, itbehaves in the same way as in the oscillatory regime. In this one dimensional examplewe observe creation and annihilation of solitary waves. Note that this system canno longer have the global periodic structure that is characteristic of the oscillatoryregime.Note that in this example noise serves only as the source of energy for the systemto excite itself, and it is not strong enough to break the underlying homogeneousstructure. If we strengthen it considerably we will end up again with the type ofbehavior displayed in Fig. 11.11. 22



11.8 ConclusionsUsing synchrony of spiking neurons, we have analyzed di�erent cases of coherent �ringactivity that lead to interesting spatiotemporal formations. These phenomena can beemployed for clustering of data consisting of a few tens of elements and ranging upto ten thousand elements, as is the case for image segmentation.Our analysis was carried out on a fairly simple system. It could, therefore, serveas a general framework within which we attack a wide scope of problems, coveringclustering (section 11.3), image segmentation (section 11.5.1), edge detection (section11.5.2) and formation of solitary waves (section 11.6). Emphasizing the generalityof the method, we inevitably lose on its ability to lead in the technical applicationfrontier over other specialized techniques.One of the main features of temporal segmentation with non-linear oscillators isthe inherent limit that we discussed in section 11.4. This limit constrains our generalanalysis of clustering, and limits our ability to perform image segmentation. In orderto have better designs for application purposes one has to �nd tricks to overcomethis limit, using methods that are no longer motivated by biological intuition. Itis satisfying to note that limited segmentation is characteristic of human ability toprocess simultaneously di�erent streams of data.If we try to de�ne the type of computational tasks that our system performs, theappropriate classi�cation would be feature extraction. Conventional neural compu-tation techniques that are being used for such purposes are based on unsupervisedcompetitive learning. Such learning was not performed in our model, although inprinciple it could be added to it. We have used throughout this chapter �xed synap-tic weights. However competition was built into our system, often through explicitinhibitory actions. The winner-take-all feature of the conventional techniques of un-supervised learning, is replaced in our models by the dominance of a particular clusterduring a speci�c time frame. In other words, temporal segmentation is a way of break-ing a given problem (or data set) into several clusters such that each one becomes awinner sometimes. By performing computation along the time axis, we are able tocarry out feature extraction without a training algorithm.23



Finally let us emphasize that the coherent behavior described in this chapter isquite robust, as long as the underlying system of spiking neurons is homogeneous andits interactions are suitable for mutual synchronization. The interesting spatiotem-poral properties of such systems may play an important role in pattern analysis andpattern formation in both biological and arti�cial neural systems.AcknowledgmentThis work was partly supported by the Israel Science Foundation.
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