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We investigate the question of independent and coherent production of pions in high 
energy processes. A model for coherent production is suggested and the restrictions 
due to momentum conservation, charge conservation, and isospin conservation are 
dealt with in detail. A formalism for the isospin analysis of identical pions is developed 
and applied to coherent states. Results and consequences are discussed. Experimental 
examples are compared with the theoretical concepts and ideas. 

I. INTRODUCTION 

In this paper we try to test theoretically the concept of coherent pion production 
in high energy experiments. Let us first summarize several characteristics that are 
known to be common to many high energy collisions. The main products of these 
experiments are pions whose average multiplicity grows slowly with energy. The 
products of the collision move with a relatively low transverse momentum k, 

(perpendicular to the incoming momentum) whose average is roughly of the order 
of 300-400 MeV. In the Appendix we discuss experimental examples that show 
these characteristics. In particular, we note that many reactions show a distribution 
of pions that is strongly concentrated around the centre of mass (this phenomenon 
is sometimes referred to as pionization). It is therefore useful to describe the situa- 
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tion in terms of the c.m. momenta which we shall use throughout this paper. The 
relativistic phase space d3k/w includes a convenient enhancement factor near the 
centre of mass. In addition to these pions, one often observes also two leading 
particles. These are outgoing particles that follow the trend of the incoming 
momenta. They can be identical with the incoming particles but may also be 
resonances that are emitted with low momentum transfers from the colliding 
particles. The relative amount of resonance emission seems to vary from one 
reaction to another. One may actually be tempted to explain all data in terms of 
resonance production. It seems, hopeless, however, to approach the problem in 
such a fashion. We chose therefore a different way in the present paper-motivated 
by looking at the problem from a different angle, and regarding pion emission as 
a process that is close to “classical radiation” of a pionic field. 

We will define now some key concepts that we will use. We call the emission of 
ri and nj in a reaction A + B -+ =i + m-j + ... uncorrelated if 

P(ki , 4) = f’(h) PM, (1) 

where P(kJ is the probability distribution of ni in (c.m.) momentum space. P(ki , k,) 
is the distribution for the two pions. Experimental examples that show some 
evidence for such behaviour are given in the Appendix. This concept can apply to 
pions of either the same or different charges. We expect that to the extent that (1) 
is satisfied, similar uncorrelated behaviour will hold also for distributions of more 
particles. We define now the emission of a pion as independent if the same P(k) is 
found in all (or many) configurations of outgoing particles where this pion is 
tested. We assume independence also to imply that the cross section for production 
of n (e.g., neutral) pions of momenta k, 1.1 k, (and some other fixed configuration 
of particles) will be proportional to 

f P(k) may in principle depend on the charge of the pion but is supposed to be fixed 
for a given energy of incoming particles. We learn in the Appendix that this can be 
sometimes regarded as a crude approximation to the actual situation. If the emission 
is independent, one expects to find distributions of the many-particle events similar 
to the Poisson distribution. A state that has such characteristics and in which also 
the phase of the pion wave function [whose norm isfP(k)] is fixed is the coherent 
state. In the next sections we will discuss the general characteristics of this state and 
explain how it can be incorporated in a T matrix description of many-particle 
production. Since we apply the method to pions that are emitted with low energies 
in c.m. it can be called coherent pionization. We deviate perhaps from the usual 
picture that this name may suggest, since we allow correlations between the pions 



COHERENT PRODUCTION OF PIONS 511 

and the leading particles. We forbid only correlations among the pions in the 
emitted cloud. Final!y, let us introduce the concept of identicaZ pions. This applies 
when a set of uncorrelated pions is described by the same wave function in momen- 
tum space for each pion with the exception of unique but different phases and over- 
all magnitudes for the three different charges. 

One may wonder how it is possible to talk about independent and coherent 
pions if there are some obvious correlations to be taken into account. The aim of 
this paper is to answer this question. We look for theoretical restrictions and 
implications with regard to these concepts. The constraints that we discuss can be 
divided into three general classes: 

(1) four-momentum conservation (phase space); 
(2) conserved quantum numbers (charge, parity, charge conjugation); 
(3) isospin conservation. 

Momentum conservation is taken care of by the leading particles-upon integra- 
ting on them one recovers the coherent state of pions (within our model at least). 
This question and related ones had already been dealt with in the literature in many 
different ways [I]. We develop our own version of coherent production and then 
contine to discuss the conserved quantum numbers and the restrictions imposed by 
them, a subject overlooked in many other discussions of similar models. We then 
develop a formalism to handle isospins of identical pions and apply it to our 
coherent states. The paper is divided into the following Sections: 

Il. - The coherent state, 
111. - Emission of a coherent state, 
IV. - Charge and parity, 
V. - Isospin analysis of identical pions, 

VI. - Isospin analysis of coherent pions, 
VII. - Discussion and summary, 
Appendix - Experimental examples. 

We do not intend to fit experimental results or even to speculate about the exact 
form of the probability distribution in momentum space and its s dependence. We 
just study the concept of coherence to see where and when it might be applicable. 

II. THE COHERENT STATE 

The concept of a coherent state of bosons is quite unique in its physical inter- 
pretation and mathematical structure. This is a quantum mechanical state that is 
closest to a classical system in its dynamical properties [2]. A coherent state of 
particles can thus be regarded as a classical radiation of the corresponding field. It 
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is used in describing electromagnetic radiation in quantum optics [2] as well as in 
the analysis of bremsstrahlung and the related infra-red catastrophe [3]. In the 
present section we apply this concept to pions. For the time being, we still dis- 
regard their quantum numbers and use only the fact that they are bosons. Modi- 
fications introduced in the following Sections can be simply implemented within 
the formalism of Sections II and III. 

In the theory of a nonrelativistic harmonic oscillator one defines a coherent 
state as an eigenstate of the annihilation operator. It corresponds to a displaced 
ground state in configuration and momentum space and has therefore the minimal 
uncertainty value of d x Op. Its time evolution looks like a classical wave packet 
since it retains its shape during the motion. 

The definition in a relativistic theory of many bosons follows parallel lines. Let 
us define creation and annihilation operators satisfying 

[u(k), a+(k’)j = tV3)(k - k’). 

We define the coherent state of bosons If) by the equation 

(2) 

44 If> = g If>, 

where f(k) is the momentum space wave function of each boson, k is the four- 
momentum, and k, = w = dk2 + pz. f(k) is a relativistic invariant function of k 
and depends on some external momenta as well. The solution to Eq. (3) is given by 

if)=exp[/d3k[~a+(k)-~~]/ IO) 

= exp 

where we normalized If) to (fl f) = 1. The basic Eq. (3) gives the clue to the 
classical behaviour: The expectation value of a second quantized boson field 
within the state ] f) will be given by the classical field with momentum distribution 
f W 

The expectation value of the four momentum operator P, is 

(fIP,If)=(fl jd3kkua+(k)a(k)If)= jd3kk,w. (5) 

The expectation value of the number operator N is defined as ii and given by 

(fINIf)=n=(fl jd3kn+(k)a(k)lf)=jd3kq. (f-5) 
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Obviously, 1 f) is a combination of all n-particle states. A straightforward calcula- 
tion leads to 

If) = c (e-A y2 / n), 11 (7) 

thus exhibiting a Poisson distribution in the states 1 n}. 
In dealing with the production of a coherent state, we have to project out of it 

the piece that corresponds to a definite four-momentum K. We will denote this 
new state by /f, K). It is given by 

djx e-iKas(feika) I 0) 

and obeys 

I d4K IA 0 = If>, 

(flf,K)=p,(K)=&jd4cce-iK.xexp[j~ j f Ia (eik.r 

(f, K’ If, K) = a”(K’ -- K) pf(K). 

(9) 

1) , (10) 
I 

(11) 

It is instructive to decompose the quantity pf(K) in a series of the various 
n-particle contributions. This is achieved by a decomposition of the integrand in 
Eq. (10) in powers of eike : 

PAK> = f p:n)W 
TL=O 

= e-’ [8”‘(K) + If(K SW2 - p2) &Ko) + & j d4k If( If& - k)12 

x S(k2 - p2) 6[(K - k)2 - p2] B(k,) B(K, - k,) + j. WI 

Equation (12) reveals the spectrum structure that one would expect: a contribution 
at K, = 0 from the vacuum component, one at K2 = p2 from the one-particle 
state and a continuum that starts from the threshold of two particles. 
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For the sake of further use in the next section, we list also some properties of the 
scalar products of two different coherent states: 

(g If> = exp I- f j g (IfI” + I g I2 - %‘f)\. (13) 

Equation (13) shows that two different coherent states are not orthogonal to each 
other (they are not eigenstates of Hermitian operators). Nevertheless, they do 
form an over-complete set [2]. The analog of Eq. (10) is 

=& s #xe-iK’z exp I-- i j g (IfI” + 1 g I2 - 2g*jPZ)/. (14) 

The calculation of quantities like pf(K) or p:“‘(K) is not an easy matter. Thus 
p:“)(K) can be rewritten as 

,$)(K) = $ .s !!f&l . . . 2 n IfW 2 *a- I f(k,Jl” Sc4)(kl + **. + k, - K). (15) 
1 

To simplify matters, we can define normalized distributions pp)(K) such that 

&L)(K) = e-" $ -(d 
. Pr U-0, j d4K,$“‘(K) = 1. (16) 

One can then use the central limit theorem and find that 

(17) 

where we used 

a@ = ; j g k” 1 f(k)12, 

$ j (k” - Ky)(k” - I?) I f(k)/” g = 6,0. rl 
(18) 

This result was given by Van Hove [4] and similar expressions were analyzed in 
detail by Lurcat and Mazur [5]. Let us discuss here briefly the expected form for 
pp) iff(k) has the characteristics of the distribution functions of the pions described 
in the Appendix. A reasonable guess would be fEU = (6; 0), with rlpy a diagonal 
matrix with elements (ai2, 02, a~~, u;~), where T and L designate transverse and 
longitudinal directions, respectively. There is obviously a connection between 
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these terms given by uE2 = 2aT2 + uL2 + p2 - G’. It then follows from (17) that 

#j(K) m 1 l 

?12 47-r20*2aEa, 
exp I- f [ (Ko2~E~0)2 + $ + s2-] 1. (19) 

T 

Equation (19) tells us that the over-all distribution of the coherent pions is peaked 
around a linearly increasing energy with an increasing width as expected from a 
typical random walk problem. 

III. EMISSION OF A COHERENT STATE 

In this section we discuss a formalism that describes a process in which two 
incoming particles (with momenta ql and q2) produce two outgoing leading particles 
(with momenta p1 and pz) and n mesons of momenta k, 1.. k, which are part of a 
coherent state. For the moment we continue to ignore the quantum numbers of 
the pions (we will discuss this problem in the next section). We propose now the 
following factorized S matrix structure 

<plp&l -.- kn I S I qlq2) 

= i 
s 

d4x ei5”“~+“2-4~-Q2’(p1p2k1 .*- k, j S(@““) p 1 qlq2). (20) 

To the extent that the incoming particles are not mesons of the kind appearing in 
the coherent cloud [or, if they are such mesons, they have momenta outside the 
range off(k)] equation (20) can be brought into a completely factorized form 

(pl& **a kn I S I qlq2) 

= i s d4K (W4 ac4)W + p1 + p2 - q1 - q2Kkl *** k, IL K)(P,P, I T I cm). 
(21) 

T acts only on the particles qlq2plp2 that form what we call the “skeleton” of the 
process. It can thus depend on the invariant variables: 

s = (41 + 4212, i = (PI + PA22 

t = (41 - P2> f = (42 - P212, 

24 = (41 - P2Y, fi = Gl2 - P112. 

The sum of all these variables is given by 

s+t+u+s+i+ii=K2+2& 

(22) 

(23) 
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where 

K = 41 + qz - PI - ~2 3 z = 412 + 4z2 + PI2 + P22. 

Note that f(k) is an invariant function of k and depends therefore on the four 
momenta of the skeleton. We refer to this fact by using the notation f,,(k). It 
assures the invariance of the expressions (20) and (21) under the Poincart group. 

The form (21) leads to the following result for the cross section of n meson 
production 

(3 2+n = 
I 

MP) d,n,)(41 + q2 - Pl - Pz) I<P I T I q>12, (24) 

where (dp) stands for the invariant phase space element of the outgoing leading 
particles and the relevant flux factor. (p 1 F / q) is an abbreviation for the skeleton 
matrix element. Equation (24) is formally similar to the two-particle production 
cross section 

02 = i VP) ~‘4’(ql + q2 - Pl - P2) IKP I T I q>12, (25) 

with the pfn) replacing the 6 function. In other words, p fn) describes the distribution 
of four-momenta absorbed in the mesonic cloud. We leave it yet as an open 
question whether the recipe (24) can be smoothly continued to n = 0 to give 
u2 = 6, where 

a = i VP) P:oau(& + 92 - Pl - Pz) ICP I 9+ I 4)12 
(26) 

= s WP) ~‘4’(ql + q2 - Pl - P2) e-fi9s IKP I T I 4)12. 

Equation (19) gave us the approximate form of p”@) which turned out to be con- 
centrated around K,, = n&j, K = 0. If we assume that (p ) T I q) is independent 
of K2, then, at least until the end of phase space is reached, we can approximate 
(24) by 

(5 2+n = I WP) d4K P:;;(K) at4’(K + PI + ~2 - 41 - 92) I (P I i- I q)12 

M j VP) aO(p + K - d I(P I 2’ I q>12 j d4Kp;;;(K) (27) 

= I VP) ~‘4’(pl + p2 - q1 - q2) I < P I T I q>12 e-“a +$ , 
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which means a Poisson distribution for the differential cross section. The last 
equality implies a structure in p to which we will return below. Further, if 5 depends 
on q only then we have 

iin I 
u 2+n = - u. 

n! (28) 

This calculation makes sense only provided phase-space restrictions can be avoided. 
In other words, if the number of pions is smaller than the maximum allowed by 
energy conservation, then 

ncG=cbG-mm,-mm,, (29) 

where ml and m2 are the masses of p1 and pz . This works best for anf(k) that is 
concentrated around the c.m. with a narrow width. For high n that violate the 
inequality (29) we have to expect distortions of the distribution law (28). 

The skeleton can be either elastic or inelastic. By elastic skeleton we mean that 
the outgoing particles in the skeleton are the same as the incoming one. This does 
not imply uz = 6’; to this question we return in a minute. An inelastic skeleton can 
have resonances among its outgoing particles. Actually, a skeleton does not have 
to be a four-particle object and can also consist out of three particles or five, etc. 
The existence of two leading particles is, of course, suggestive of a four-point 
skeleton. In the case of an elastic skeleton we have some evidence that Eq. (28) 
cannot be continued to n = 0. This is pointed out in the Appendix. We have, 
therefore, to rely on unitarity to give us the elastic part (p 1 T I q) in terms of all 
the inelastic reactions. As a crude approximation, one may consider a model in 
which all inelastic reactions are described by Eq. (21) with an elastic skeleton. 
Unitarity leads then to the condition 

i[<p,p, I T+ I qxqzt> - <pIpz I T I q&l 

- s $$ g (‘W4 sc4)(~lf + ~2’ - 41 - q&p I T+ I P’XP I T I q) 

= ,c, J- g z Gw4 d;!,,r,.,(41 4- q2 - Pl - PA 

y (PIP2 I T+ I Pl’PZ’XPl’PZ’ I T+ I q& (30) 

where ,oE!,,,~,,~ are the n-particle contributions to an object of the type defined in 
Eq. (14). The right side of Eq. (30) is analogous to Van Hove’s “overlap integral” 
[4] that determines the t structure of the elastic amplitude. Note that an explicit t 
structure can and should exist in <p I F I q) [6] as we shall see below. 
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It is interesting to see how the bremsstrahlung theory [3] which actually suggests 
this formalism, solves the unitarity problem. The function f,, is given in this case by 

(29~)~/~f~~(k) = e,’ z + e2’ z - e, $$ - e2 z , (31) 
1 2 1 2 

where ei are the various charges and E is the photon’s polarization vector. Clearly, 
fis peaked around k = 0 and the whole treatment is verified by QED only in the 
limit k -+ 0 [3]. Then it turns out that indeed 

<P I T I q) = (P I i’ I q) e-iipq’2, (32) 

and unitarity is satisfied, provided p satisfies elastic unitarity. To see this, we 
rewrite (30) with the use of (32): 

~KP I T+ I 4) - <P I T I q)l 

= j- g g (P I T+;+ I P’XP I ?- I qXW4 j- d4x 

exp 1 1 x - 2 I d3k - 2w (If,,, 12 + If,,, 12 2j:,De’“7-p,g4 e~~h’+%‘-~l-oz)~ 

Using the properties of (31) and replacing here the eikx in the integrand by 1 (the 
limit k + O!), we find 

~L<P I T+ 14) - (P I T I q)l 

=e 
-ii,,/2 I d3p,’ d3p2 

2&t 2E2’ (P I T+ I P’XP I T+ I 4xw4 s(4)(Plf + P21 - 91 - q2), 

(33) 

which shows that the ansatz (32) works provided (p j p I q) obeys by itself a 
unitarity equation. 

There clearly are several important differences between the formalism of brems- 
strahlung and the emission of mesons in high energy collision. The first is that the 
identification (32) cannot be made in our case. Another is that the limit k --f 0 is 
not justifiable and cannot be obtained with massive (and energetic) mesons. That 
can be circumvented by having a skeleton matrix element that does not vary 
significantly with K. A very important third difference is that we may choose f to 
depend on q only. In the Appendix we show characteristic distributions that 
depend only on k, and k, . These variables can be given an invariant definition in 
terms of k * q1 , k . q2 , ql . q2 and the masses involved. Therefore one needs no p 
dependence. This then makes it possible to go from Eq. (27) to Eq. (28) and get 
simple relations for the integrated cross sections. 
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Let us now investigate shortly some of the properties of the skeleton in the 
high-energy collisions. To be specific, we will usually think of an elastic skeleton 
although other types can also be constructed. We already hinted after Eq. (27) that 
it has to have some structure. Otherwise, phase space effects of the leading particles 
should be felt. We learn from experiment that the leading particles are indeed 
confined to low transverse momenta, i.e., also low momentum transfers. Such a 
dependence can be incorporated in (p / T / q). We note that an explicit r 
dependence will be effectively weakened for higher multiplicities. That can be seen 
by looking at the relevant differential phase space element 

d3p, d”pz 2E 2~ d4K +4’(~~ + pz + K - 41 - qJ + 
dp, dt d4K 
8q&R ’ 

(34) 
1 2 

where y is the azimuthal angle and q is the value of the incoming momenta q1 and 
q2 in the c.m. R is given by 

R,]-s+ E,K cos 8,,, E,K a cos 8,,, 8 cos 6&, 

z/s p 6 + 6 a cos 0 fwl ap ’ 
(35) 

where K and p are the magnitudes of K and p1 and fJD1, is the angle between them. 
For low values of K,, (low multiplicities), R + I. Hence a strong t-dependent effect 
introduced in ?’ will show up for low n and get distorted for high n. This may be 
quite consistent with observed trends. We will not investigate further this question 
since in this paper we are mainly concerned with the consistency of the whole 
picture rather than the fine details. 

The explicit construction of an example of coherent production of mesons 
shows that independent productions can take place. Coherence is also a statement 
about the phases that are not directly measurable. They will, however, be important 
when we discuss the isospin question in Section VI. The easiest things to measure 
are of course the cross sections. Their distribution, suggested by Eq. (28), will get 
modified by considerations of the quantum numbers of the pions to which we turn 
in the next Section. 

IV. CHARGE AND PARITY 

The coherent state must have a fixed electric charge that matches the charge of 
the skeleton. This is not true of simple charged coherent states of the types 
(i = + or -) 

1~) = exp ] - i 1 d3k 9 + s d3k g at+(k)/ 1 0) i = +, 0, -. (36) 
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One way to deal with the problem can be to start from the state 

IF) = If+> IAl> If-> (37) 

and project out the required charge. An alternative is to define a state I,f+f- , Q) 
obeying the equation 

a+(k) a-(k) If+f- > Q> = &f+Wf-(4 If+f-, Q> (38) 

which has a definite charge Q. This is an analog of Eq. (3) and can serve as a 
definition of a coherent state of charged particles. The solution to Eq. (38) is 

lf+f-, Q> = C-1'2 c ' 
1L (n + Q)! n! 

(1 -j$f+(k) a++(k))“‘” 

X (s $f-WI a-+(W); I O>, (39) 

where the sum starts from n = 0 for positive Q and from n = -Q for negative Q. 
The normalization constant C turns out to be 

c = (4)” J,(2ix), (40) 

where 

(41) 

This parameter is equal to the average value of n2 in the resulting distribution of 
(n + Q) positive and ~1 negative charged states 

x2 = (n2). (42) 

It is straightforward to show that the projection of I F) onto a specific charge Q 
does indeed contain this state. It is 

If,Q> = Ih>lf+f-,Q> (43) 

which we will regard as the right choice to take the place of If) in Eq. (21). The 
distribution of charged particles that results from this state was discussed by us 
in Ref. [7]. It is the conditional distribution reached by multiplying two Poisson 
distributions (for the two different charges) and projecting out the right total 
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charge. Thus for a cloud of charge Q the cross section for n 
negative pions is given by 

p(Q) = PC-Q) = iQ x2ntQ 
11 n+Q JQ(2i.4 ?Z!(H + Q>r ' 

and the average is 

(n) = -ix ‘(j+$$) . 
Q 

+ 

521 

Q positive and n 

(44) 

(45) 

We will return to a discussion of the distribution in Section VII. 
We come now to the question of parity conservation. If the skeleton contains 

two spinors among its four particles, this question can be overcome by inserting 
y,finstead offin the relevant expressions. Thus (20) becomes 

and this expression is invariant under parity. This little change has some severe 
consequences - it leads to a distinction between even and odd numbers of emitted 
pions. Whereas the even numbers can still be described by the arguments in 
Section II which lead to the basic 6, the odd number of pions will be described in 
terms of 

6’ = i (dp) e-Apt ac4)(p1 + p2 - q1 - 4 KP I YJ I q>12. (47) 

The numerical differences between 6 and c?’ can of course affect the distribution. We 
might, however, sometimes find small deviations that will not be detected on the 
logarithmic scale. For instance, in the limiting case in which the incoming baryon 
is very fast and the outgoing very slow, one has 1 ii u(qJ m 1 U(pJ y&q,)1 . 

Another way to realize the situation is to consider the case of symmetric pionic 
distributions, f(k) = f(-k). Then it is clear that the allowed transitions in the 
skeleton have to be from even j to even j and from odd j to odd j. However, in the 
case of an even number of pions we have also even (odd) I + even (odd) 1, whereas 
if the number of emitted pions is odd we find even (odd) I + odd (even) 1. Hence a 
spin transition must be involved. All this means that the completely factorized 
form (21) cannot be obtained and, in the best case, it breaks down into somewhat 
different distributions for even and odd pions. 

In practice, it turns out that this problem often does not play an important role. 
Thus if one looks at the distribution of charged pions one sums over the neutral 
ones. The neutral pions are then included in an effective skeleton and the 
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distribution of the charged ones is given by 1 y5f+y5f- , Q) which has always either 
odd or even numbers of y5 matrices. One way to completely avoid the parity 
problem is simply to discuss only emission of scalar pairs of pions. This is of 
course farther away from independent pion production. We will return and discuss 
such an approach in Sections VI and VII. In future, we will refrain from using 
explicitly the y5 factor although it will be implicitly assumed. 

One immediate important consequence of the parity problem is that a skeleton 
of spinless particles cannot emit a coherent state 1 f, Q) of pions. Moreover, one 
may expect that the more spins there are in the skeleton the easier it is to connect 
it to a pionic coherent state. It is interesting to note in this connection that 
I+-(~TT) < uT(rp) < u&p) and the direction of the inequalities is also that of the 
number of spins involved. If independent pion production is an important inelastic 
mode, then this correlation may be meaningful. 

Several selection rules arise for neutral systems from charge conjugation con- 
siderations. Thus a skeleton of four pions can be connected only to even number 
of pions, which is the same condition as that of parity conservation. A neutral 
system of identical pions has positive charge conjugation. Thus it cannot couple, 
e.g., to efe- (via a photon). Similarly pp annihilation at rest is restricted by charge 
conjugation. Both e+e- and pp are different from rrp andpp collisions. e+e- produces 
hadronic matter via a photon and it is unclear what can serve as the skeleton. 
pp collisions, although being pure hadronic reactions, have a small elastic skeleton. 
Hence once again it is not clear how to implement our model in this case. The 
model can hopefully be used in mp and pp reactions in which charge conjugation 
does not impose additional restrictions. 

V. ISOSPIN ANALYSIS OF IDENTICAL PIONS 

We develop here a formalism that enables us to deal with the isospin analysis 
of a system of identical pions. We limit ourselves to identical pions since this case 
renders itself to an elegant and simple treatment. We will give an argument at the 
end of this Section showing that this limitation does not actually prevent us from 
reaching the optimal situation (lowest isospin) in coherent states. 

We start by defining a normalized momentum space distribution y(k) satisfying 

The fact that the pions are identical is summarized in the assumption 

m) = hd& i= +,O, -, 

(48) 

(49) 
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where the ,fi are three constants. The magnitudes and phases of the f; determine 
the isospin structure of a definite combination of identical pions. 

Let us now define three operators 

u,+ = s d3k -$$zz q+(k), (50) 

which obey the commutation relations 

[Ui ) Uj’] = t&j . (51) 

The isospin generators for the system of identical pions can be simply expressed 
in terms of these operators. They are 

where 

I = ui+T&zj ) (52) 

1 0 

i 1 

1 0 

Tz=z 0 (53) 
0 1 

1, 1 
0 

Tu=$(; -Ej. %=t I-3. 

Let us now define the number operators 

Ni = Ui+Ui) N = N+ + N,, + N-5 (54) 

and the bilinear isoscalar creation and annihilation operators 

A = u,,uO - 2u+u- , [I, A] = [I, A+] = 0. (55) 

The three operators N, A and A+ play a key role in the isospin analysis. It is 
interesting to note that they close on an algebra [8] 

[N, A] = -2A, [N, A+] = 2A+, [A, A+] = 4N + 6. (56) 

Their importance stems from the fact that the operator I2 can be written in terms 
of them as 

I2 = N(N + 1) - A+A (57) 

as can be seen by a straightforward calculation. It follows from this equation that 
a state of n-identical pions will have isospin I = n if and only if 

A 1 I = n, n> = 0. (58) 
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It is simple to construct such a state by using the following operator (note the 
mixed isospin property) 1 

T+ = a++ + d/z a,,+ + a-+. (59) 

This operator obeys 

&[A,T+]= -a++ d/Za,--a-= U [U, T+] = 0 (60) 

Because of these properties it is evident that 

A(T+)n 1 0) = 0; (61) 

hence every Z, projection of the state (T+)n 1 0) has an isospin of I = n. Actually, 
this state contains all n + 1 Iz projections. We can write them out explicitly and 
define through them the states 

= B-l/’ : (r, + p)! p $!- 2p _ Iz)! (a++P+” (d/z aO+YP-‘~ (a-‘)” I Oh 

(62) 

where the sum is over all integer p such that the factorials can be defined. B is a 
normalization constant equal to 

(63) 

A system of n identical pions can include, in addition to I = n, also all isospins 
of n - 2, n - 4,... down to 0 or 1. Altogether, these form +(n + l)(n + 2) states, 
characteristic of the completely symmetric combination. We can prove that this is 
the case by direct construction of the isospin states. We have already seen that A+ 
is a creation operator of an Z = 0 system; indeed, 

1 ~~ I I = 0, n = 2m) = d/(2m+-17 (A+)m I 0). 

Thus we have created the lowest isospin for even number of pions. It is now simple 
to construct the general state in terms of (62) 

1 I, I, , n = 2m + I> = D-1/2(A+)” I I, I,, n = I). (65) 
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D is a normalization constant equal to 

D = 4”m! r(m + z + 8) 
r(z + f) . 

The fact that all the different states (65) form an orthonormal system can be shown 
by using the property (60). Simple calculation of the number of states shows that 
we constructed in this way all possible isospin states of identical pions. 

Let us apply this formalism to the coherent state / F) of Eq. (37). It is defined 
now in terms of identical pions and satisfies 

ai I 0 = fi I F), i= +,o, -. (67) 

In particular, 

A I Fj = (fo” - 2f+f-)I F). 633) 

We see that if we choose fo2 = 2f+f-, we have a coherent state which contains 
only states with Z = n. In other words, this choice of the parameters leads to the 
maximal isospin content. In our application to physics, we try to achieve the 
opposite goal, viz., to minimize the isospins of the coherent state since we are 
bound by the isospins of the skeleton. We find by using Eq. (57) that 

where 

(12) = (F 1 I2 1 F) = ii@ + 2) - lfo2 - 2f+f- 12, (69) 

fi = @‘I NI F> = If+ I2 + Ifo I2 + If- 12. 

It follows from (69) that (12) obtains its minimal value if 

(70) 

arg(fo2) = n + w(f+f-> and If+ I = If- I . (71) 

These are also the conditions that ensure that the state I F) has no preferred 
direction in isospace, (F I I I F) = 0. Thus the minimal value is reached by 
random walk in isospace 

(12),i, = 2ii (72) 

We can show quite generaly that this situation cannot be improved if we 
consider a coherent state / F) of nonidentical pions. Indeed, in this case direct 
computation leads to [the use of Eq. (52) is now forbidden!] 

<12) = 2ii + [J g; (lf+W12 - lf-w)]2 

+ 2 1 j g [f+*wfow + fo*(~)f-wlj2. (73) 
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The minimal value is once again given by Eq. (72). It is reached when the two 
squared terms vanish and in the limit of identical pions these conditions reduce to 
(71). We expect a similar situation to prevail also when we deal with the more 
physical state 1 f, Q) in the next section. We think, therefore, that the restriction to 
identical pions does not prevent us from reaching the minimal possible value of the 
isospin average of a coherent state. 

VI. ISOSPIN ANALYSIS OF COHERENT PIONS 

Let us now apply the methods developed in the previous section to the coherent 
state of Eq. (43), namely, If, Q) = IfJ /f+f- , Q). We will limit ourselves in the 
numerical calculations to the case Q = 0. Other Q values can be treated similarly. 
The main idea is that the model (20) should not violate isospin conservation. That 
cannot be achieved in an absolute fashion with the emission of If, Q) since this 
state contains all possible isospins. We may still hope that it does make sense as an 
approximation. That will be the case if the main isospin content of If, Q) can be 
matched by the skeleton. Thus an elastic skeleton of np can carry up to Z = 3, and 
an elastic skeleton of pp up to Z = 2. Hence the imposition of the necessary isospin 
cuts on If, Q = 0) will make small difference only if its isospins are confined 
mainly to the above-mentioned regions. 

The result of Eq. (72) may look quite pessimistic. Nevertheless, one should 
remember that I F) contains all the possible Z, projections. By limiting ourselves 
to If, Q = 0) we can hope to do better. The calculation in this case is much more 
difficult than that for 1 F). The reason is that / f, Q = 0) is no longer an eigenstate 
of a+ and a- , separately. It is, however, an eigenstate of A: 

A If, Q> = Go2 - V+f-IIf, Q>, a0 If, Q> = .f, I f, Q>. (74) 

We limited ourselves again to identical pions (see discussion at the end of Section V). 
We have now the freedom to play with the phases and magnitudes of the fi . As a 
matter of fact, the parameter that is of importance is 

&jg. (75) 

By choosing f = 2, we reach the situation of the maximal isospin state. The 
discussion in Section V shows us that the minimal values are reached for negative 
values of 5. That, indeed, is also the case here. Before turning to the numerical 
evaluation, we would like still to point out that suitable choices off can eliminate 
a particular isospin altogether from any combination of identical pions. 
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The reason for this result is that Eq. (62) implies 

(1 = n, 1, = 0, n If> = B-1’2<O I f>(d~A,)” ; p, p,c,nl 2pj, (2tP. (76) . . 

Hence a suitable choice of 8 leads to (I = n, Z, = 0, n if> = 0. Once this is 
achieved, it follows from Eq. (65) that all (I, Z, = 0, n 1 f) = 0. Thus the choice 
5 = - 1 eliminates Z = 2, and the choice f = -3 eliminates Z = 3. 

Let us now turn to the question of the minimal isospin content. For simplicity, 
we choose f+f- as real and denote it by x = f+f- , in agreement with the notation 
in Eq. (41). We find then the following results 

(I”) = 41;J;Q-&) (1 + If0 I”) - 2x2 $# - 2x2 + 2 If0 I2 + 4 Re(h"x>, 
0 0 

(77) 
(n> = (f I Nlf) = 'I$?$ + I fo I2 = <nd + ow>. 

The results for (I) vs. (n), where (Z)(Z + 1) = (12), are plotted in Fig. 1 for 
several values of the parameter f. We see that for negative values of 5 they all lie 
very close to each other obeying 

(12) m (n). (78) 

Thus by going from the state I F) to IJ; Q = 0) we gained a factor of two in the 

7 
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1 

1 2 3 4 5 6 7<n> 

FIG. 1. Plots of <I) vs. (n) for various choices of the parameter 5 in the coherent state 
ILQ =O>. 
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FIG. 2. The percentages of the contents of different isospins in the coherent state / f; Q = 0) 
vs. (n) for the choice 6 = -0.5 are plotted. 

f=-1 

FIG. 3. Same plot as in Fig. 2 for [ = -1. 
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FIG. 4. Same plot as in Fig. 2 for $ = -3. 

minimal value of (P). This is of course essential in order to be able to use the 
coherent state If, Q = 0) in a physical model. 

The absolute value of .$ is the asymptotic (i.e., for large (n)) ratio of the number 
of ?TO to the number of n+. Therefore, we do not consider values that are too far 
from unity. In Figs. 24, we show the distribution of (I) for various choices of the 
parameter 5. Figure 2 shows that for t = -0.5 all isospins higher than three are 
strongly quenched. Figure 3 has the choice 6 = -1 that eliminates I = 2 and 
Fig. 4 is drawn with 5 = -3 that eliminates I = 3. In all figures we see the 
important roles of low isospins for reasonable values of (II). A similar calculation 
leads to the distribution of the various proportions of specific isospin values in the 
n-pion configurations. Figure 5 shows these distributions for [ = -0.5, a value 
that emphasizes the isospins 0, 1 and 3. Figure 6 shows the distribution for f = -2, 
where I = 0, and 1 are the important values. The relative amounts of the low 
isospins change slowly with f. If one tries to attach a coherent state to an elastic 
pp skeleton, one needs I < 2. We see from Fig. 6 that although the leading terms 
have low I values one still encounters sizable contributions from forbidden isospins. 
Hence this picture is not in very good agreement with isospin conservation. If the 
skeleton has higher isospins involved (like elastic n-p or pp --A), the situation is 
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FIG. 5. The percentages of the contents of different isospins in the various n-particle states 
included in If, Q = 0) vs. n for the choice 6 = -0.5 are plotted. Note the two types of curves 
that describe even and odd isospins for even and odd n, respectively. 
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”  

FIG. 6. Same plot as in Fig. 5 for ( = -2. 
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better. In any case, however, the production of if, Q) can only approximately 
satisfy the isospin restrictions. 

There exists one possibility of eliminating the isospin (as well as the parity) 
problem altogether and that is the production of the pions in scalar isoscalar pairs. 
This requires of course different skeletons for even and odd pionic reactions. We 
will investigate here the mathematical structure of such a coherent state of identical 
pions. It can be called a coherent state since it can be chosen as an eigenstate of the 
operator A 

A I g> = g I g>, (79) 

which is similar to the property (74) of I f, Q). The solution of Eq. (79) that is pure 
Z=Ois 

= 
4 

Ag c 7*+17 1 Z = 0, n = 2m). 
m 

The n-pion distribution is given by 

1 2m+1 
P(n = 2m) = 7 

smhg(Zi+ l)!’ 

(80) 

(81) 

One important property of (80) is that the isoscalar state has the same amount of 
all the different charges 

(n,+> = (n,-> = (n,o> = i(n) (82) 

which is easy to check. However, now the probability of finding neutral pions is 
correlated to that of the charged pions (in if, Q) these are independent!). The 
probability to find Y charged pairs in a state 1 Z = O,a = 2m) is 

fYr; m> = ,,z!+“i,! i 
2m - 2r 

1 
4’ 

m-r . (83) 

From Eqs. (83) and (81) one can find the probability to find r charged pairs in the 
coherent state I g). It is 

p (CL (W f g2D+1 

( 

(P + r)! 
T 

slnh g +,, p!(2p + 2r + l)! 1 
2 (2p)! . (84) 
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The average number of pions is 

(n) = gcothg - 1 (85) 

and (r) = i(n). Using such an analysis, we can calculate the expected correlation 
of (n,o) vs. r for fixed (n). These correlations are shown in Fig. 7 where (n,,o) is 
plotted versus neh = 2 + r in a way that can be contrasted with the Fig. 16 in the 
Appendix. We see that the strong correlation that exists in Fig. 7 does not look 
like the trend of Fig. 16. Some other aspects of this distribution will be discussed in 
the next section. 

2 4 6 a 10 12 14 n,h.n.r*Z 

FIG. 7. The dependence of <nWo> on n,+ is shown for two different values of <nm> = <R,,o> + 
2 (n,+) = 3 <n,o> in the coherent state I g). 

VII. DISCUSSION AND SUMMARY 

In Section IV we saw that imposing charge conservation on a coherent state 
leads to obvious restrictions of the concept of independent emissions. Nevertheless, 
we could solve the problem within the framework of coherent states: the projection 
of the coherent state 1 F) of Eq. (37) on a particular charge state turned out to be 
the coherent state If, Q) of Eq. (43). This process cannot be continued with the 
isospin problem. Projecting out of 1 f, Q) only the allowed isospins is possible but 
it distorts the nature of the state. However, we Iearned in Section VI that optimal 
choices of the parameter .$ can make these distortions minimal. Thus the coherent 
state 1 f, Q) can be regarded as an approximation to an allowed state. The optimal 
ranges of [ depend on the skeleton to which the relevant coherent state is coupled. 
The higher the isospins of the skeleton particles are, the smaller the distortions of 
the coherent state will be. The nature of these skeletons is still left as an open 
problem. We may suppose that various types of skeletons can exist and their 
effects may interfere with each other. The resulting picture will again be very 
complicated unless one particular skeleton has an overwhelming effect. Under 
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such circumstances, one can look for regularities of the cross sections for various 
configurations. One may for instance think of an elastic skeleton leading to a 
distribution PLO) of Eq. (44). In Ref. [7], we have shown that all various PAQ) look 
similar. We include here again the comparison of Pie) with experiment in Fig. 8. 
That comparison is based on the compilation of Wang [9] of many inelastic 
reactions. The Fig. 8 shows also distributions suggested by Wang: W’is a Poisson 

100% 
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2 3 4 5 z- 3 4 5 z-w-3 -4 5 
<“,> in,> <“,> 

FIG. 8. Theoretical distributions are compared with Wang’s compilation of inelastic produc- 
tion data [9]. WI and WI1 are taken from Wang’s paper [9] and the solid curve is the result of the 
PcO’ distribution following from the state If, Q = 0). The figure is taken from Ref. [7]. 

distribution in &(nCh - 2) and W” a hyperbolic sine distribution in (nCh - 2). If 
we replace the coherent state 1 .f, Q) by the state 1 g) of Eq. (79), we find the distribu- 
tion P(g) given by Eq. (84). Since 1 g) describes a production of pion pairs we may 
expect it to be somewhat similar to WI. This is indeed the case as shown in Fig. 9, 
where we compare WI, P(O) and P(g) in a fashion similar to Fig. 8. We may expect 
that for higher n, P(O) will be modified by the isospin cuts and both P(O) and P(g) 
will be affected by phase space limitations. 

Figure 9 seems to favour the mode If, Q) over 1 g). It could be expected that 
P(g) will not be a good fit since this distribution of the state 1 g) corresponds to the 
production of only an even number of pions. Even if another skeleton is added for 
the odd pions, we are still faced with the result, derived and discussed in the 
previous section, that a strong correlation has to be expected between (n,~) and 
rich . It is, therefore, doubtful whether this state 1 g) is actually produced in experi- 
ment. The state 1 g) has the theoretical advantage that it can be easily embedded 
in the formalism since its constituents are pion pairs with vacuum quantum 
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C”<> <“,> <“,> 

FIG. 9. Comparison of WI, PO), and PCS) distributions on a scale similar to Fig. 8. 

numbers. Future experimental and theoretical analyses will hopefully tell us 
whether this mathematical simplicity can be exploited in realistic physical models. 

The state If, Q) is indeed closer to the concept of independent pions than the 
state 1 g). Throughout the paper, we have tried to follow this concept of independ- 
ent production and we realize that it may look strange from a different point of 
view of the dynamics of multipion production. Thus the generalization of mecha- 
nisms familiar to us from two-particle productions would quite naturally lead us to 
expect many complicated configurations of resonances in the final states. In 
principle, the two different approaches may be complementary rather than con- 
tradicting. The reason is that the different production modes through resonances 
interfere with each other and can no longer be easily identified in the final 
amplitude. In such cases one usually resorts to a statistical approach. The coherent 
emission of pions can be regarded as a particular statistical description. We may 
expect, therefore, the sum of all possible production mechanisms to have a big 
overlap with the coherent amplitude. This leads to a new dual approach to many- 
particle production that should be further investigated. 

Our investigation of the isospin problem answered only one necessary question: 
To what extent can violations of isospin inequalities be avoided. We did not give 
an explicit model of how the various isospins are produced. According to the 
picture outlined in the previous paragraph, we expect such a detailed model to be 
very complicated. Therefore, the correlations between various production modes 
of particles, that do in principle exist because of isospin conservation, do not simply 
follow from our description. 

Our starting point was the independent production of pions and this led us to 
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an approximate description of multipion amplitudes. There are, obviously, 
different statistical approaches possible. The most conventional ones use actually 
the conservation of isospin as their main foundation, assigning equal statistical 
weights to all the allowed states [lo]. Their usual description does not make use of 
a skeleton. That is one of the differences between us and these statistical approaches. 
Although our model of coherent production can be regarded as a certain descrip- 
tion of a statistical state, it does, however, incorporate dynamical assumptions and 
physical principles that are not of a pure statistical nature. 

Finally, let us point out that our particular model for coherent production of 
pions - which seems to us as a natural way to approach the problem - is not 
necessarily the only one possible. In fact, the various papers of Ref. [l] discuss 
different approaches to the same problem. Our analysis in Sections IV to VI depends 
on the nature of the coherent state and not necessarily on the mechanism of its 
production (Section III). Therefore this analysis can be applied to the other 
theories as well. Approaching the many-pion emission problem on the basis of 
coherent states has some important advantages of mathematical elegance and 
physical simplicity, and we may hope, therefore, that it will also turn out to be 
useful and productive. 

APPENDIX: EXPERIMENTAL EXAMPLES 

In this Appendix, we discuss some experimental facts that can serve as a back- 
ground for the theoretical discussion. In particular, we want to elucidate the 
concepts defined in the Introduction. We rely heavily on both published and 

2 -1 0 +, +2 -2 -1 0 +1 +2 

c. m. LONGITUDINAL MOMENTUM, GeV/c 

FIG. 10. Peyrou plot of n-p -+~sT+wx-x~. Taken from Ref. [II]. 
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FIG. 11. Distribution of & events vs. their longitudinal centre-of-mass momentum. Un- 
published data of Ref. [ll]. 

r 

FIG. 12. Distribution of X+ events vs. their centre-of-mass energy in the reaction r-p -+ 
p~-n+~+n-~-d’. Unpublished data of Ref. [ll]. 
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unpublished data of the ABBCCHW collaboration [l 1, 121 on 16 GeV n-p 
interactions. 

Figure 10 shows the existence of leading particles and the concentration of the 
remaining pions around the centre-of-mass. This concentration is further 
investigated in Figs. 11 and 12. Figure 11 shows the longitudinal centre-of-mass 
distribution of the yr+ in two different configurations. Note the similarity between 
the dominant features of these two curves that would also be implied by 
independent production of n+. Figure 12 gives the centre-of-mass energy distribu- 
tion of the Z-+ in the reaction n-p + ~-~~~+~+T-TT-TT~. Note the dominant peaking 
at energies of the order of 0.3 GeV. The strong peaking at low energies in the 
centre-of-mass is necessary in order for relation (29) to hold for a large range of 12 
so that phase-space limitations do not affect the distributions characteristic of 
independent production. 

-1 5 -I -05 0 Q5 1 1.5 PL 

FIG. 13. Distribution of T+ events vs. their longitudinal centre-of-mass momentum as a 
function of the other X+‘S longitudinal momentum in T-P + ~-p~~+n+n-~-rr~. See explanation 
in text. Unpublished data of Ref. [ll]. 

Let us come now to the question of uncorrelated production. Ideally, we should 
look at a seven-dimensional plot for two pions to check relation (1). Instead we 
choose to restrict ourselves to a check of the correlation between two longitudinal 
momentum distributions. Figure 13 shows the longitudinal centre-of-mass momen- 
tum distribution of one Z-+ in n-p + rr-pnOz-+n+r~- for several choices of the 
longitudinal momentum of the other 7~+ [these choices correspond to values of 
(0, -0.1 GeV), (-0.2, -0.3), (-0.4, -0.5) for the three distributions shown]. 
The general trend is a uniform decrease of the distribution in agreement with 
uncorrelated production. One may argue that, since T+X+ is an exotic channel, it 
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should not exhibit strong correlations, whereas the ~T+TO channel could be more 
sensitive to such effects. The truth of the matter is that a similar check for .rr+r” 
correlations shows a far less regular behaviour than Fig. 13. Nevertheless, it is 
still true that the main bulk of events is concentrated around the centre of the 
pL+pLo system. We have to conclude that uncorrelated production of n+rr” is a very 
crude approximation to the data. 

If independent pion production can be regarded as an approximation to experi- 
ment, we may expect that the bigger the number of produced pions is the more 
energy is dissipated into the pionic cloud. As a consequence, the energy available 
for the leading particles will decrease with increasing multiplicity of pions. That 
this is indeed the trend of the data is seen in Fig. 14. We see that the average 

n-p INTEHACTIONS AT 16 &V/c 

-2 -1 0 +1 r2 
AVERAGE C.m LONGITUDINAL MOMENT”M, Gevk 

FIG. 14. Vectors of average momenta of various particles in different modes observed in the 
~7 experiment. Taken from Ref. [12]. 

momenta of the proton and the 7~ are decreasing systematically with increasing 
multiplicity. The other pion’s behaviour does not change so drastically. Note also 
the almost constant value of the transverse momentum of both the leading particles 
and the emitted pions. This is a general property that must be common to the 
skeleton and the coherent state in our model. 

Finally, let us discuss the cross sections distribution for the various multiplicities. 
Figure 15 shows the cross sections for charged nonstrange particles production in 
the 16 GeV n-p experiment. The general shape is reminiscent of Poisson type 
distributions. For rich = 2, we included two entries. The dots show all inelastic 
processes and the cross includes also the elastic one. Using a statistical approach, 
one may wonder whether the elastic cross section should be included or not. 
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FIG. 15. Distribution of the cross section for nonstrange particle production in the p-p 
exoeriment. Taken from Ref. [ll]. The cross represents the value obtained for nclr = 2 if the 
elastic reaction is included. 
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NUMBER OF CHARGED TRACKS 

FIG. 16. The average number of r” produced in P-P at 25 GeV vs. the number of charged 
particles. Taken from Ref. [13]. 
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Figure 16 (taken from a 25 GeV -n--p experiment [13]) shows evidence against it: 
the elastic cross section is about equal in magnitude to all inelastic ones with 
n - 2. In all other multiplicities, the reactions without any Z-O form a small ch - 

minority of the events. Hence we may conclude that the elastic scattering has to be 
treated on a different footing. Note the behaviour of (n,~) in Fig. 16. A distribution 
following the state If, Q) of Eq. (43) would lead to a constant (+), whereas the 
results of 1 g) shown in Fig. 7 do not show the trends seen in Fig. 16. 

The experimental facts discussed above should be considered as a background 
for the ideas discussed in the paper. We are aware of the fact that different experi- 
ments show different amounts of strong resonance productions and the results 
shown here are not reproduced in detail in other experimental configurations. 
Nevertheless, the general features are similar and we may hope that they can be 
crudely described by the model discussed in the paper. 
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