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Abstract. Based on an observation about the different effect of ensemble averaging on the bias
and variance portions of the prediction error, we discuss training methodologies for ensembles of
networks. We demonstrate the effect of variance reduction and present a method of extrapolation
to the limit of an infinite ensemble. A significant reduction of variance is obtained by averaging
just over initial conditions of the neural networks, without varying architectures or training sets.
The minimum of the ensemble prediction error is reached later than that of a single network.
In the vicinity of the minimum, the ensemble prediction error appears to be flatter than that of
the single network, thus simplifying optimal stopping decision. The results are demonstrated
on sunspots data, where the predictions are among the best obtained, and on the 1993 energy
prediction competition data set B.

1. Introduction

In recent years, the use of artificial neural networks (NN) for time series prediction has
gained popularity and nowadays NN can compete with the best time series methods [1]. In
this paper we re-examine one of the major techniques for NN performance improvement—
ensemble averaging [2, 3]. We argue that it requires a special training methodology, and
can be more effective whennot combined with popular training constraints such as weight
decay and early stopping‖.

The theoretical setting of the method is provided by the bias/variance decomposition.
Within this framework, we will define a particular bias/variance decomposition for networks
differing by their initial conditions only. This is a particularly useful subset of the general
set of all sources of variance. We show that while the bias of the ensemble of networks
with different initial conditions remains unchanged, the variance error decreases consider-
ably. The theoretical background is presented in the next section. We then describe the
sunspots data, on which our technique is demonstrated. This includes a simple method of
extrapolation to the infinite ensemble. We show that the minimal prediction error of the en-
semble is reachedlater in training than that of single networks, and the ensemble error curve
appears to be flatter in the vicinity of the minimum error. Results for the sunspots problem
are presented in section 5, where we also evaluate the combination of ensemble averaging
with other popular techniques. Our results outperform the best published results [5].

† School of Physics and Astronomy. E-mail: ury@tarazan.tau.ac.il.
‡ School of Mathematical Sciences. E-mail: nin@math.tau.ac.il.
§ School of Physics and Astronomy. E-mail: horn@vm.tau.ac.il.
‖ Under a different setup (training with input noise) weight decay was found useful in conjunction with ensemble
averaging [4].

0954-898X/97/030283+14$19.50c© 1997 IOP Publishing Ltd 283



284 U Naftaly et al

Our method is further evaluated with a data set from the 1993 energy competition
(section 6). The extrapolation method works somewhat differently in this case, signifying the
existence of correlations among networks with different initial conditions. The qualitative
behaviour of the error minima are the same as those of the sunspots analysis.

2. The bias/variance decomposition and ensemble averaging

The motivation of our approach follows from a key observation regarding the bias/variance
decomposition, namely the fact that ensemble averaging does not affect the bias portion of
the error, but reduces the variance, when the estimators on which averaging is done are
independent.

The classification problem is to estimate a functionfD(x) of observed data
characteristicsx, predicting class labely, based on a given training setD =
{(x1, y1), . . . , (xL, yL)}, using some measure of the estimation error onD. A good estimator
will perform well not only on the training set, but also on newvalidation sets which were
not used during estimation.

Evaluation of the performance of the estimator is commonly done via the mean squared
error (MSE) distance by taking the expectation with respect to the (unknown) probability
distributionP of y:

E[(y − fD(x))2|x,D].

This can be decomposed into

E[(y − fD(x))2|x,D] = E[(y − E[y|x])2|x,D] + E[(fD(x)− E[y|x])2].

The first term does not depend on the training dataD or on the estimatorfD(x); it measures
the amount of noise or variability ofy given x. Hencef can be evaluated using

E[(fD(x)− E[y|x])2].

The empirical mean squared error off is given by

ED[(fD(x)− E[y|x])2]

whereED represents expectation with respect to all possible training setsD of fixed size.
To further investigate the performance under MSE, we decompose the error to bias and

variance components [6] to get

ED[(fD(x)− E[y|x])2] = (ED[fD(x)] − E[y|x])2+ ED[(fD(x)− ED[fD(x)])
2]. (1)

The first term on the RHS is called the bias of the estimator and the second term is called
the variance. When training on a fixed training setD, reducing the bias with respect to
this set may increase the variance of the estimator and contribute to poor generalization
performance. This is known as the trade-off between variance and bias. Typically variance
is reduced by smoothing; however, this may introduce bias (since, for example, it may blur
sharp peaks). Bias is reduced by prior knowledge. When prior knowledge is used also for
smoothing, it is likely to reduce the overall MSE of the estimator.

When training neural networks, the variance arises from two terms. The first term comes
from inherent data randomness and the second term comes from the non-identifiability of
the model, namely, the fact that for a given training data, there may be several (local)
minima of the error surface†.

† An example of an identifiable model is (logistic) regression.



Optimal ensemble averaging of neural networks 285

Consider the ensemble averagef̄ of Q predictors, which in our case can be thought
of as neural networks with different random initial weights which are trained on a fixed
training set:

f̄ (x) = 1

Q

N∑
i=1

fi(x).

These predictors are identically distributed and thus, the variance contribution (second term
on the RHS of equation (1)) becomes (we omitx andD for simplicity)

Var(f̄ ) = E[(f̄ − E[f̄ ])2] = E
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The first term on the RHS can be rewritten as
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Substituting these equalities in equation (2) gives

E[(f̄ − E[f̄ ])2] = 1

Q2

∑
{E[f 2

i ] − (E[fi ])
2} + 2

Q2

∑
i<j

{E[fifj ] − E[fi ]E[fj ]}. (3)

It follows that
1

Q
Var(fi) 6 Var(f̄ ) 6 Var(fi)+maxi,j (E[fifj ] − E[fi ]E[fj ])

Q
6 max

i
Var(fi). (4)

More specifically, when replacingf (x) by f̄ (x), the reduction in the variance portion of the
error is proportional to the degree of independence between the predictors in the ensemble.
Due to random initial conditions only, a certain level of independence may be achieved. The
independence can be increased by various ways such as different architectures, input noise
injection, and different training times. Thus the variance portion of the error for ensemble
has the form

ED[(f̄d − ED[f̄d ])2] ' ED[(fd − ED[fd ])2] + γ
Q

whereγ > 0 is given by

γ = E[fifj ] − E[fi ]E[fj ] = E
(
{fi − E[fi ]}{fj − E[fj ]}

)
.

Thus, the notion of independence can be understood as independence of the deviations of
each predictor from the expected value of the predictor, which can be replaced (due to
linearity) by

E
(
{fi − E[f̄ ]}{fj − E[f̄ ]}

)
and is thus interpreted as an independence of the prediction variation around a common
mean.
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We wish to find the optimal training procedure for reducing the error of our ensemble
average. Traditional training algorithms aim at reducing the error of the individual NN, i.e.
the total expression of equation (1), including both bias and variance. Typically the bias
decreases and the variance increases as one employs more and more training epochs, and
one aims to stop when their sum reaches a minimum. Since in our algorithm the predictor
is defined by an ensemble average, we have to search for a different minimum, as we are
able to eliminate some portion of the variance of the estimator via ensemble averaging. We
should, therefore, search for a point with a smaller bias (longer training time) as the optimal
trade-off for ensemble predictor.

3. The sunspots problem

Yearly sunspot statistics have been gathered since 1700. The data are plotted in figure 1.
These data have been extensively studied and have served as a benchmark in the statistical
literature [7–9].
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Figure 1. Sunspots data: average sunspot activity from 1700 to 1979.

Following previous publications [5, 8, 10], we choose the training set to contain the
period between 1701 and 1920, and the test set to contain the years 1921 to 1955. Following
[8], we calculate the prediction error according to the average relative variance (ARV)

ARV =
∑

k∈S(yk − f (xk))2∑
k∈S(yk − E[yk])2

(5)

which is the MSE divided by the variance of the data setS. The denominator isσ 2 = 1535
for the training set. The same value is used for the test set.

3.1. Previous results

In a survey of sunspots prediction models [11], the threshold autoregressive (TAR) model
of Tong and Lim [12, 13] was favoured. The TAR model is a combination of two linear
autoregressive models with an activity threshold above which one autoregression model is
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used and below which the other is used [14]. The TAR estimator gave a training ARV of
0.097 and the same result for the prediction set.

Weigendet al [8] used a standard multilayer perceptron architecture with 12 input units,
8 sigmoidal hidden units and a linear output unit. Possible over-fitting was addressed by
the use of weight decay [15]. Their best result was an ARV of 0.082 on the training set
and 0.086 on the prediction set.

Nowlan and Hinton [5] imposed a mixture-of-Gaussians prior on the weights which
they called ‘soft weight sharing’ to get an ARV of 0.072 on the test set. Pi and Peterson
[10] introduced theδ-test which establishes the dependence of a sequence of numbers on
previous element(s) of the sequence. They found thatxt−1, xt−2, xt−3, xt−4, xt−9 and
xt−10 are the most important variables in the sunspots series. Thus, the functional form
y = f (xt−1, xt−2, xt−3, xt−4, xt−9, xt−10) is expected to lead to good prediction results.
These lags were used as inputs to a (6,8,1) network. The ARV obtained on the test set was
0.073.

4. Ensemble averaging over initial conditions

In this section we will demonstrate the method we use for ensemble averaging over initial
conditions by applying it to the sunspots problem. We use neural networks with 12 inputs
(as in [8]). All nets have one sigmoidal hidden layer consisting of 4 units and a linear
output. They are then enlarged to form simple recurrent networks (SRN) [16] in which the
input layer is increased by adding to it the hidden layer of the previous point in the time
series. This favours ordered temporal application.

The learning algorithm consists of back propagation applied to an error function which
is the MSE of the training set. A learning rate of 0.003 is employed. A validation set
containing 35 randomly chosen points was left out during training to serve for performance
validation.

The training procedure of an NN starts out with some choice of initial values of the
connection weights. We consider then an ensemble of networks that differ from one another
just by these initial values. This defines the ensemble that we wish to average over. Since
the space of initial conditions is very large, we develop a technique which allows us to
approximate averaging over the whole space.

Our technique consists of constructing groups of a fixed number of networks,Q.
Choosing several different groups of the same sizeQ, and averaging over them, we define
a finite size average. Then we try to estimate the limitQ→∞. If we regard the specific
choice of initial conditions to be equivalent to some random error added to the predictor, we
may expect this error to decrease as 1/Q. It turns out that performing a simple regression
in 1/Q indeed suffices to obtain this limit.

Figure 2 displays our results on the validation set and figure 3 shows the results on
the test set. In both figures we show ARV values as function of the number of training
epochs. The highest curves in both figures correspond toQ = 1, i.e. the case of single
networks. Below it appear the curves ofQ = 2, 4, 10, 20 followed by the extrapolation to
Q → ∞. To demonstrate how the extrapolation is carried out we display in figure 4 the
points obtained fort = 70 kE (kilo epochs) andt = 140 kE for the test set as a function of
1/Q. It is quite clear that a linear extrapolation is very satisfactory. Moreover, the results
for Q = 20 are not far from the extrapolatedQ→∞ results.

In this example (figure 3) the ARV is quite flat as a function oft , suggesting that most
of the variance was eliminated by the averaging process. The variance that is due to initial
conditions can be found by subtracting theQ→∞ result fromQ = 1 (figure 5). Although
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Figure 2. ARV of cross-validation sets. ARV is plotted versus training time in kilo epochs
(kE). These are results for the cross-validation set of 35 points in the sunspots problem. The
curves are shown for different choices of group sizes:Q = 1, 2, 4, 10, 20 from top to bottom.
The lowest curve is the extrapolation toQ→∞.

Figure 3. ARV of test set. Results for the test set show a shallowQ→∞ curve, and the two
minima. The set-up is the same as in figure 2.
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Figure 4. Extrapolation method used for extracting theQ → ∞ prediction. The results for
different Q at two different training periods,t = 70 kE (top) and 140 kE (bottom), can be
extrapolated by a linear regression in 1/Q.

this variance is due to initial conditions and not to different training sets, it is increasing in
time (as would be expected from the variance due to training sets).

Some interesting conclusions follow from this numerical study:

(i) The true minimum of the final predictor is obtained at largert values than that of the
Q = 1 curve. Note that if we were to use canonical techniques of single network
training, we would have stopped aroundt = 50 kE, whereas the validation set shows
minimal ARV for Q = 1. This is, however, very different from where theQ → ∞
curve goes through minimum, both in the cross-validation set and in the test set. This
property of ensemble training follows from the fact that one portion of the variance
contribution to the error is removed or reduced by the ensemble averaging, and thus
less smoothing (bias) is needed for regularizing the predictor.

(ii) The error function of the final predictor is shallower than that of the single network,
which is obviously due to the reduction in variance.

The finalQ→ ∞ error function is quite flat, and therefore ARV differences between
different stopping points are not large. Nonetheless, for accurate estimates one should
beware of the fact that the stopping criterion for theQ = 1 problem is very different from
theQ→∞ one. The latter is the one which is relevant to our problem.

The curves shown in figures 2–5 were obtained with a learning rate of 0.003. We will
see in the next section that better results can be obtained for slower learning rates, as well
as for other choices of architecture. When lower errors are obtained, the variation between
the single networks and the ensemble is less dramatic. Yet in all cases we find the general
characteristics of variance reduction and shift in the temporal structure of the error functions.
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Figure 5. Variance error due to initial conditions is estimated by the difference of the ARV
values forQ = 1 and forQ→∞.

5. Analysis of the sunspots problem

From the curves of figures 2 and 3, we may read the performance values of the predictors
which can be defined through different stopping criteria. UsingQ = 20 data and the
conventional stopping criterion, i.e. the minimum of theQ = 1 curve for the cross-validation
set of data att = 49 kE, we are led to ARV=0.0796 on the test set. Stopping att = 90 kE,
which is the minimum point ofQ = 20 on cross-validation data, leads to ARV= 0.0752
on the test set. The absolute minimum of theQ = 20 curve on the test set, ARV= 0.075,
is reached att = 132 kE.

Table 1. The minimal ARV on the sunspots test set as a function of the learning rate for simple
networks.

Learning rate ARV

0.010 0.0868
0.003 0.0731
0.002 0.0720
0.001 0.0713

We repeat the whole exercise for different learning rates and find that the results are very
sensitive to this parameter. This is demonstrated in table 1 which is based onQ = 20 groups
of networks in each case. Clearly lower learning rates lead to better results. Unfortunately,
they require an immense number of training epochs and are very costly.
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5.1. Recurrent networks

Recurrent neural networks have been successful as time-series predictors. Simple recurrent
networks (SRN) [16] are a practical compromise between fully recurrent dynamics and
computational overload, and are being widely used [17].

In such networks, the connections are mainly feedforward, but include some feedback
connections. The recurrency lets the network remember cues from the recent past, but does
not appreciably complicate the training. We have already presented in the previous section
the results of a simple recurrent network [18]. Here we compare it to a simple feedforward
network (table 2). We see that recurrency helps for lowering the ARV on both ensemble and
single nets, but its influence on single nets is about four times stronger than on the ensemble.
We note that the improvement of the SRN ensemble is smaller than that of the feedforward
network. Since the reduction of errors is due to variance elimination, this means that SRN
networks are less independent than feedforward nets. This sounds plausible because of the
extra dependence of an SRN on the previous data point.

Table 2. The predicted ARV of recurrent and non-recurrent networks trained with the same
learning and prediction conditions, using a learning rate of 0.001.

SRN Feedforward

Ensemble 0.0706 0.0713
Single 0.0739 0.0764

Figure 6. Our best results for the test set of the sunspots problem. Plotted here areQ = 1
results for various choices of initial conditions, represented by their averages with error bars
extending over a standard deviation, andQ = 20 results (the smaller points), as a function of
training time in kilo epochs. The network is based on the Pi and Peterson variables, and the
learning rate is 0.0005.
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5.2. Selected inputs

Pi and Peterson [10] report very good results using a (6,8,1) network where the input vectors
consist of the variablesxt−1, xt−2, xt−4, xt−9 andxt−10. Applying the same inputs to our
paradigm, indeed improved the prediction results of the ensemble (table 3). The result of
0.0674 is better than any previously reported result.

Table 3. The predicted ARV of recurrent networks trained with full input vectors (12 inputs)
and ofδ chosen lags (6 inputs) using a learning rate of 0.0005.

12 inputs 6 inputs
Ensemble 0.0700 0.0674
Single 0.0730 0.0698

Note that we employed here a very low learning rate which, together with the choice
of the Pi and Peterson variables, led to this remarkable result. We have already remarked
before that in such a case the variance is no longer as strong as in the examples studied
above, where a learning rate that is six times faster was employed. For completeness we
present in figure 6 theQ = 1 andQ = 20 curves for this case. Error reduction due to
ensemble averaging is small; nonetheless it is significant.

5.3. Weight decay

It is well known [8, 17] that a large network cannot generalize well. Therefore, it is
advisable to use the smallest network that is able to fit the training data. Many algorithms
were used to achieve this goal [5, 8, 17]. Here we use weight decay [8] which lets the
network itself decrease non-useful connections during training. The cost function is

MSE+ 1

2
λ
∑
i

w2
i

1+ w2
i

(6)

where the sum is over the network weights, andλ is the smoothing parameter to be adjusted.
The authors of [8] use this cost function to predict the sunspots series. We repeat their

experiment using aQ = 20 ensemble of (12,8,1) networks, and obtain the results presented
in table 4. The main effect of the weight decay algorithm is to reduce the ARV of the single
networks, while it has almost no effect on the ensemble ARV.

Table 4. The predicted ARV of networks with and without weight-decay trained with the same
learning and prediction conditions.

With decay Without decay

Ensemble 0.08138 0.08142
Single 0.08331 0.08578

A simple weight decay which adds a penalty of the formλ
∑

i w
2
i f (w

2
0 + w2

i ) to the
energy function, gave no significant improvement on the ensemble prediction, although it
did improve the results of single networks.



Optimal ensemble averaging of neural networks 293

6. Analysis of energy competition data

Here we use another data set to demonstrate our findings: data set B of the 1993 energy
competition, which consists of 3344 measurements of four input variables at hourly intervals
during daylight (see figure 7). The physical source of the data were measurements of solar
flux from five outdoor devices. Four of the devices were fixed. The fifth, whose output was
to be predicted, was driven by motors so that it pointed at the sun. For more information
and results see [19].
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Figure 7. 500 elements of the 1993 energy competition data set B.

Our training set consists of 1000 vectors containing the four variables, the decimal
date and the five last values of the target. Test and cross-validation sets that contain
500 vectors each are formed in the same manner. A similar methodology to the one
used for the sunspots data was applied to these data: we use 60 simple (non-recurrent)
feedforward networks of 10 inputs, one sigmoidal hidden layer of 8 hidden units and a linear
output unit. Setting the learning rate to 0.02, we get the MSE of ensembles consisting of
1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 and 60 nets, depicted in figure 8. Again we see the same
effects that were observed on the sunspots data set: (i) a shift of the minimum, and (ii) a
shallower curve of the ensemble MSE.

There is one notable difference between this analysis and the former one on sunspots:
we no longer obtain a simple 1/Q dependence. This is demonstrated in figure 9 where we
plot the behaviour of the MSE as a function of 1/Q. Since a linear regression does not
capture the trend of the data, we have employed a power law dependence:

MSE= aQ−k + b. (7)

The results of the fit indicate thatk = 0.81. This serves as the basis for producing the dots
in figure 8 that represent the extrapolation to infiniteQ. The fact thatk < 1 indicates that
there exists a correlation between networks with different initial conditions.
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Figure 8. Prediction for the 1993 energy competition data set B. Results for a test set
of 500 vectors. The curves are shown for the different choices of ensemble size:Q =
1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 and 60 from top to bottom. The dots are the extrapolation
to Q→∞.

7. Conclusions

We have shown that ensemble averaging is a powerful procedure which, when used correctly,
improves on single network performance. Ensemble averaging is not an alternative to
methods for introducing bias and reducing variance, such as smoothing or early stopping,
as it does not eliminate variance that is due to training on a limited training set. When
the portion of the variance due to initial conditions is large, ensemble averaging is most
effective. By using large ensembles we may eliminate it altogether.

As demonstrated on the sunspots data set, we were able to perform a simple extrapolation
to infinite ensemble size. The variance turned out to be inversely proportional to the size,
demonstrating that, in this case, some independence between predictors can be achieved by
varying the initial conditions.

Our experience suggests that when training for optimal ensemble performance, the
training method and stopping criteria have to be chosen carefully. This is because stopping
criteria based on single network training may not be useful for the ensemble. In fact,
ensemble results are improved if single nets are over-trained. Instead of early stopping
or even stopping when the validation error reaches a minimum, further training has to be
done, so that the bias portion of the error will be further reduced, while paying the price of
higher variance for individual networks. Later, the variance portion of the error is reduced
by the ensemble average with no effect on the bias. Finally, the reduction of variance, that
is inherent in this method, leads to a flattening of the error curve as a function of training
time.

We have applied our method both to the sunspots data and to the energy competition
data. For both we have obtained a considerable decrease of variance by averaging over
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Figure 9. Extrapolation method used in the energy competition data set. Shown here are results
for differentQ at t = 20 kE. The solid line represents the best fit to a power law, described
in the text, which leads to a decreasing component ofQ−0.81. This indicates that there exist
correlations between networks having different initial conditions.

the space of initial conditions. In the energy competition case we found theQ dependence
to be more complicated, signifying non-trivial correlations between the different networks.
Some decorrelation methods could turn out to be useful here. In the sunspots case, the
Q dependence was as expected from statistical independence. Using theδ-test of Pi and
Peterson [10] together with our method, we obtained the best predictions yet for this problem.
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