The inertial-DNF Model: Spatiotemporal
Patterns with Two Time-Scales.

Orit Kliper # David Horn ®! Brigitte Quenet®

aSchool of Computer Sciences, Tel Aviv University, Tel Aviv 69978, Israel
bSchool of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel

¢Lab. d’Electronique, Ecole Superieure de Physique et Chimie Industrielles, Paris
75005, France

Abstract

We introduce the inertial- DNF (iDNF) model, an expansion of the Dynamic Neu-
ral Filter (DNF) model, as a model that generates spatiotemporal patterns similar
to those observed in the Locust Antennal-Lobes (ALs). The DNF model, which
was described in previous works, includes one temporal scale defining the discrete
dynamics inherent to the model. It lacks a second, slow, temporal scale that exists
in the biological spatiotemporal data, where one finds slow temporal patterns in
the behavior of individual neurons in response to odor. Using the iDNF, we ex-
amine mechanisms that lead to temporal ordered spatiotemporal patterns, similar
to those observed in the experimental data. We conclude that the second temporal
scale is crucial for the creation of temporal order within the evolving spatiotemporal
pattern.
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1 Introduction

The Dynamic Neural Filter (DNF) (4) was used in previous work (1)(2) as a
model that generates spatiotemporal patterns which bear similarity to those
observed in the experimental data obtained from the locust ALs (6). We have
specified, within the model, inputs corresponding to different odors and dif-
ferent concentrations of the same odor, and have analyzed the resulting spa-
tiotemporal patterns of the neurons of our model. Using SVD we investigated
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three sets of data corresponding to three different information classes: global
spatiotemporal data, which are the spatiotemporal patterns over the period
of odor presentation, spatial data, which are the total spike counts during this
period, and local spatiotemporal data, which are spike counts in single tempo-
ral bins. We have shown that the DNF model can produce long spatiotemporal
patterns that are different for different inputs, and that for an appropriate defi-
nition of inputs, representing different odors and different odor-concentrations
(OCs), the different patterns can be fairly clustered according to the correct
odor, and the correct OC. The quality of the clustering varies depending on the
type of information source that was analyzed. However, in the spatiotemporal
data of the DNF we could not show structures that reveal the evolvement of
the spatiotemporal patterns with time as demonstrated in the experimental
analysis of (6), who have demonstrated a representation of odors as manifolds
with concentrations as trajectories delineated by the temporal order of the lo-
cal spatiotemporal data. The original DNF', with its one time-step dynamics,
lacked a second, longer time-scale dynamics of the kind observed in the firing
patterns of PNs of the Locust (3)(6). This second time-scale may be respon-
sible for some short-term memory that carries the odor information after it
is being removed, leading also to the temporal-ordered trajectories mentioned
above. In the current work we show that adding suitable inertial characteris-
tics to the DNF, allows our model to reproduce concentration-trajectories in
the local spatiotemporal analysis.

2 The inertial-DNF Model

The DNF (4) is a recurrent binary network with one-step dynamics that rep-
resent a fast (50msec) synchronized clock. In the inertial-DNF (iDNF) model
we add inertia through two mechanisms operating on the level of individual
neurons: self-excitation and dynamic threshold variation. Self-excitation is in-
duced by adding positive diagonal elements to the synaptic weight matrix.
This increases the probability of a neuron, once excited, to fire another action
potential at the next time step. This mechanism adds consistent, prolonged
behavior of neurons over time, but causes the system to move to fixed points.
To avoid undesired fixed points we add dynamic thresholds, designed to de-
crease the neuron’s sensitivity to its input with firing. When the neuron is
quiet its threshold decays to its original value. The dynamic threshold obeys

where, 6;(t) is the threshold of neuron i, at time t. §6;(¢) is the change in
the threshold of neuron i, between time t-1 and time t. n;(¢ — 1) is 0/1 indi-
cating the behavior of neuron i, at the previous time step. a; determines the
increase in the threshold of neuron i, upon firing, and 7; is the decay parame-



ter, into the threshold’s original value 6;(0). This mechanism, combined with
self-excitation, leads to inertial behavior (persistence over hundreds of msec),
yet avoids the pitfall of fixed points. It should be regarded as a simple repre-
sentation of a possibly complex mechanism involving the single neuron as well
as the whole network. Inertia is being activated with odor onset in order to
mimic the slow temporal patterns exhibits by the PNs in the ALs (3).

3 Simulations

We performed 5-second simulations in a 100-neurons iDNF'. Inspired by the
findings of Rospars et al. (5), the inputs were expressed in terms of the log-
arithms of the concentrations as described in previous work (2). The inputs
applied to the iDNF are similar to the inputs applied to the original DNF i.e.
15 OCs - 3 different odors, 5 concentrations each. Each OC was tested in 15
trials, differing from one another by noise. Thus we have altogether 225 spa-
tiotemporal patterns. In all simulations odor was applied after one second of
baseline activity, kept for one second, and then allowed to decay for 3 seconds.

Examples of spatiotemporal patterns, produced by the iDNF model, are pre-
sented in figure 1.

conel

cotc2  fr

rannd

Fig. 1: Spatiotemporal patterns produced for 2 different odors, 3 concentra-
tions each, in a 100-neurons iDNF, in 5-seconds simulations. Odor was applied
after one second of baseline activity kept for one second and then allowed to de-
cay. The self-excitation and dynamic threshold mechanisms caused an inertial
behavior of the neurons. Black color represents firing, white color represents
quiescense.

Similar to the original DNF model, the iDNF’s spatiotemporal patterns change
considerably across odors and also across concentrations of the same odor. The
novel feature is the inertial behavior of the iDNF neurons. The behavior of 4
selected iDNF neurons in 15 different trials of each OC is plotted in figure 2.



Fig. 2: Examples of the behavior of 4 different neurons in 15 trials of each of
the 15 OCs (3 odors, 5 concentrations each) in 100-neurons iDNF, in 5-seconds
simulations. Within each small frame is the behavior of the neuron in the 15
trials of a specific OC.

The variation in the behavior of a neuron, in different trials of the same OC,
is larger than in the original DNF model, but the consistency across trials is
still clear (see the small frames in Figure 2). The important feature seen in
the behavior of the iDNF neurons is the periods of excitation and inhibition
in a slow time scale of hundreds msec. This feature, which characterizes the
behavior of the PNs in response to odor, was absent in the original DNF
model.

4 Analysis of the spatiotemporal data

We analyze the 225 spatiotemporal patterns that were produced by a 100-
neurons iDNF in response to the 15 OCs. We follow the analysis of the origi-
nal DNF data presented in previous work (2) and examine three data sets. As
far as the spatial data (neuronal spike counts) and the global spatiotemporal
data are concerned, we find in the analysis of the iDNF model results similar
to those of the DNF model. Of particular interest is the analysis of local spa-
tiotemporal data, where the iDNF makes an important difference. As we will
show below, the iDNF achieves temporal order within the local spatiotempo-
ral patterns, similar to what is observed in the biological data. SVD is again
used as our main processing tool.



The data points for the analysis of local spatiotemporal information were all
individual time bins from the 5-seconds simulations. Prior to the analysis,
all trials of the same OC were summed together giving one spatiotemporal
pattern for each OC. To further simplify the calculations we consider time
bins of 100 msec (i.e. sum of 2 time steps). Each local spatiotemporal data
point is an N-dimensional vector. Each such vector is an average over trials
and over 100 msec of simulation. Figure 3a shows 3 dimensions of the SVD
operated on 750x100 data matrix that includes 15x50, 100-dimensional neural
spatial patterns. Figure 3b shows the results when SVD was operated on the
250x100 data matrix of 5 concentrations of only one odor.
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Fig. 3: Plots of 3 dimensions of SVD operated on the local spatiotemporal data
from 5-seconds simulations in a 100-neurons iDNF. 15 trials of each OC were
summed before applying SVD on 100 msec time bins. a. A plot of dimensions
3, 4, and 5 of the SVD, which was operated on the time bins of 3 odors, 5
concentrations each. b. A plot of dimensions 1, 2, and 3 of the SVD, which
was operated on the time bins of 5 concentrations of only one odor.

The self-excitation and dynamic threshold mechanisms add temporal order
within the spatiotemporal patterns. As seen in figure 3, the 50 data points of
each specific OC form a trajectory in the reduced space (3b) on the odors’
manifold representations (3a). This is similar to the representation of the bi-
ological data (6). We note that in order to reveal reasonable odor separation,
the elements used in the plot were dimensions 3, 4, 5 of the SVD space. How-
ever, for revealing concentration trajectories the first three SVD dimensions
were enough.

5 Discussion

The original DNF model lacks a second time scale in which the slow temporal
patterns of individual PNs can be well represented. In this work we introduce
one possible way to incorporate this slow time scale in the DNF model, by
adding mechanisms that lead to inertial behavior. We have shown that this



allows individual neurons to exhibit inerital behavior on top of the fast in-
herent 50 msec clock. Similar to the slow temporal patterns at the ALs, the
inertia was turned on with odor onset. When analyzing the spatiotemporal
patterns of the iDNF we have obtained odor and concentration clusters simi-
lar to those obtained for the original DNF spatiotemporal patterns. However,
adding inertia, we have obtained an important new result: the temporal bins
of the local spatiotemporal data analysis exhibit temporal order similar to the
one observed in the analysis of the biological spatiotemporal patterns.

The generalization from DNF to iDNF proved to be a successful and simple
way of adding short-term memory to single-step dynamics. It may therefore
be recommended as a general recipe for modeling purposes whenever there is
a need to incorporate slow time scales into simple discrete dynamics.
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