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Abstract. Clustering algorithms are employed in many bioinformatics tasks, 

including categorization of protein sequences and analysis of gene-expression 

data. Although these algorithms are routinely applied, many of them suffer 

from the following limitations: (i) relying on predetermined parameters tuning, 

such as a-priori knowledge regarding the number of clusters; (ii) involving 

nondeterministic procedures that yield inconsistent outcomes. Thus, a 

framework that addresses these shortcomings is desirable. We provide a data-

driven framework that includes two interrelated steps. The first one is SVD-

based dimension reduction and the second is an automated tuning of the 

algorithm’s parameter(s). The dimension reduction step is efficiently adjusted 

for very large datasets. The optimal parameter setting is identified according to 

the internal evaluation criterion known as Bayesian Information Criterion 

(BIC). This framework can incorporate most clustering algorithms and improve 

their performance. In this study we illustrate the effectiveness of this platform 

by incorporating the standard K-Means and the Quantum Clustering algorithms. 

The implementations are applied to several gene-expression benchmarks with 

significant success. 

Abbreviations and keywords: Bayesian Information Criterion (BIC), 

Quantum Clustering (QC), Optimal K-Means (OKM), Optimal Quantum 

Clustering (OQC), Principal Component Analysis (PCA), Singular Value 

Decomposition (SVD). 

1. Introduction1 

In the field of genomics and proteomics, as well as in many other disciplines, 

categorization is a fundamental challenge. Categorization is defined as systematically 

                                                           
1 Availability and Supplementary material: The framework has been implemented in MATLAB 
(Version 6.5), and is freely available at http://adios.tau.ac.il/compact/framework  
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arranging elements (data-points) into specific groups. Clustering, being an 

unsupervised learning problem, may be regarded as a special case of categorization 

with unknown labels (for further details see [1, 2]). Some algorithms such as CLICK 

[2], CTWC   [3, 4] and CAST [5] were primarily developed for large sets of biological 

data while others were adopted from other fields (e.g., K-Means, Fuzzy C-means [6], 

Agglomerative Hierarchical Clustering, Self Organized Maps). One of the algorithms 

that we will expand on is Quantum Clustering (QC), the effectiveness of which has 

been demonstrated on gene-expression data [7, 8]. 

In large scale gene-expression tasks, clustering algorithms are useful for diagnosis 

of different samples (e.g., differentiating sick and healthy tissues, associating tissues 

with subtypes of a disease) as well as revealing functional classes of genes among the 

thousands often used in experimental settings [9].  

Methods for collecting expression levels on a genome-wide level have been rapidly 

improving, leading to increased amounts of data to be analyzed. Additionally, much 

of the biological data is represented in high dimensions. Some clustering algorithms 

do not perform well when applied to large high-dimensional datasets. In particular, 

several model-based algorithms that are shown to be very efficient on limited size 

datasets [10], are found unfeasible when large scale datasets arc introduced (for 

computational complexity discussion see [11] and supplementary). The hope is that 

efficient preprocessing will address the task of computational feasibility while 

efficiently remove noise, thus allowing exposure of meaningful features of the data.  

It would be presumptuous to propose one preprocessing protocol that works for all 

kinds of data. Different preprocessing methods are based on averaging and variance 

standardization, excluding genes with low variance between conditions [2], PCA, 

Fourier transforms [12], and more.  

One fundamental preprocessing direction is dimension reduction. Ding et al. claim 

that the dimension should be correlated with the expected number of clusters [13]. 

However, this may not hold for real biological data, since this argument is based on a 

model in which data are generated by independent Gaussian distributions. Moreover, 

in many cases the number of clusters is unknown. 

Several efforts to develop efficient and accurate filtering schemes and compression 

tools have been proposed [14, 15]. A routine scheme for gene-expression data 

(including commercial analysis tools provided by various platforms) is to filter 

elements in a supervised manner. For example, genes whose variance is below a 

certain threshold for different experimental conditions are discarded. Obviously, such 

filtering is often biased and misses a genuine property of the data. 

In addition to preprocessing, clustering algorithms usually require selecting a set of 

parameters, thus turning each application into a set of subjective choices. If no prior 

knowledge is available, assessing the correct number of clusters (e.g., as required by 

the K-Means algorithm), is almost impossible. This choice is avoided by hierarchical 

algorithms that propose some O(N) possible partitions
2 

of varying sizes, and the 

decision on the best partition is user determined.  

Several of the most successful algorithms in the field of gene-expression do not 

explicitly accept the number of clusters K as an input; however this number is directly 

                                                           
2 In the paper N refers to the number of elements in the data, and K denotes the number of 

clusters. 
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derived from their parameters. Amongst them are (i) the CAST algorithm [5], in 

which the affinity threshold determines the number of clusters, (ii) the CLICK 

algorithm [2], in which the homogeneity value determines K by controlling the 

kernels and the definition of singletons. (iii) The CTWC algorithm [4] where some 

parameters (such as stability threshold and minimal group size) determine K, and (iv) 

QC [7] where the Parzen window size (σ) determines the number of clusters.  

Moreover, algorithms such as K-Means, Fuzzy C-Means and others, being 

nondeterministic, are inconsistent as they depend on starting points and other 

stochastic factors. Some methods such as averaging clustering results, following a 

majority rule, or applying other heuristics [16] have been suggested.  

Since different results may be obtained by the numerous clustering algorithms that 

exist, evaluation of this variety is an essential step of the analysis [17, 18], and a 

reliable method is required. In this study we present a framework to overcome the 

pitfalls described above by (i) a generic method for preprocessing and (ii) a measure 

based on an internal criterion that can be incorporated in any clustering algorithm. 

2. Methods  

Our proposed framework includes two interrelated steps: preprocessing and parameter 

tuning. We outline the rationale of the method and describe its implementation on two 

different kinds of clustering algorithms.  

2.1. Preprocessing 

Singular Value Decomposition (SVD) serves as a good and efficient preprocessing 

step and is useful for dimension reduction [8, 12, 19].  

SVD represents any real matrix X as a product X=UΣV
T
, where U and V are 

orthonormal matrices and Σ is a diagonal matrix whose eigenvalues si (singular 

values) appear in decreasing order. The columns of U and V define two independent 

vector spaces. This decomposition is unique (up to overall phases) and holds for any 

real matrix of size m by n. The number of non-zero entries in Σ equals the rank of X. 

A common application of SVD is dimension reduction: this is performed by replacing 

Σ with a truncated version where only a small number (r) of leading singular values is 

retained and the rest are replaced by zeros. The resulting reconstructed matrix X’ 

(X’=UΣ’V
T
), is the best least-mean-squares approximation of X obtainable by any 

matrix of rank r.  

We focus our attention on the matrices U and V. In a problem where X is a matrix 

of m genes by n samples, U and V form representations of gene and sample spaces 

respectively. It is within these spaces, now reduced to rank r that we look for cluster 

structures [8].  

How does one choose the rank r of the truncated space? The singular values si have 

the meaning of standard deviations. Defining the relative variance Vi of component i 

(see Fig 1A and supplementary), one may come up with several principles for 

truncation.  
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Wall [12] suggested the following guidelines: (1) ignore components beyond the point 

where the cumulative relative variance becomes larger than a certain threshold (e.g. 

85%), (2) ignore components with relative variance below a certain threshold (e.g. 

1%), or (3) stop when a sudden decrease is observed in the relative variance graph. 

We suggest using SVD- entropy [19] as a guide for choosing among the possibilities. 

E varies between 0 and 1. E = 0 corresponds to an ultra ordered dataset that can be 

explained by a single eigenvector (problem of rank 1) and E = 1 stands for a 

disordered matrix in which the spectrum is uniformly distributed. We find that in 

gene-expression datasets, entropy values are higher than 0.5, reflecting a disordered 

distribution. If E is very low, a sudden decrease in the spectrum is a good indicator for 

the best r values. Otherwise we prefer criteria (1) and (2). 

Truncation to dimension r is equivalent to projecting the vectors of our problem 

(e.g. the genes or samples vectors) onto an r-dimensional subspace. The vectors, as 

defined in this subspace, have different norms. It is preferable to renormalize the 

vectors, i.e. project them onto the unit hyper-sphere in r-space. This approach 

considers similarity between vectors in the truncated space in terms of the cosine of 

the angle between them, and is consistent with the standard application of Latent 

Semantic Analysis (LSA) [20]. It is worth mentioning that, although we suggest using 

SVD, other truncation methods may be used (e.g., Fourier transforms, PCA). 

2.2. Parameter Tuning 

The validity and reliability of clustering algorithms may be questioned on two 

grounds: (1) subjectivity, i.e. using supervised criteria in the parameter setting and (2) 

inconsistency, i.e. obtaining different results upon repeated application of 

nondeterministic algorithms.  

In order to reduce these pitfalls to a minimum, we suggest using an internal 

criterion. The criterion we choose to adopt is the Bayesian Information Criterion 

(BIC). Fraley and Raftery [21] developed it in a model-based analysis that assumed 

the data to be generated by a mixture of underlying normal probability distributions. 

The parameters of the underlying distributions were set by an EM algorithm. The BIC 

criterion is used to evaluate the number of clusters and the quality of the suggested 

clustering. BIC is defined as follows:  

ˆ2 ( , ) log( ) 2log ( | )M MBIC l x m N p x M const≡ Θ − ≈ + 
 

(3) 

where lM(x,Θ) is the mixture log likelihood (of the data x and the predicted model 

Θ), which is maximized under the constraint that mM (a function of the number of 

independent parameters
3

), is minimized. It is assumed that a higher BIC score reflects 

                                                           
3 We choose mM=dim*K* (K+dim), where dim is the number of dimensions and K is the number of 

clusters. 
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better clustering quality. Recently, Teschendorff et al. have applied an EM algorithm 

to find a partition that maximizes the BIC criterion [10]. Here we do not optimize the 

BIC score. Trusting the clustering algorithms we just use this score, in a way befitting 

the algorithms, to find the best clustering parameters.  

3. Implementation 

We demonstrate our method on two fundamentally different clustering algorithms. 

They differ in some fundamental aspects thus testing the generality of our framework.  

Optimized K-Means (OKM) 

K-Means is a very popular, fast and intuitive algorithm. This naïve algorithm has two 

known drawbacks: First, it requires the number of clusters as an input, and thus is 

limited to scenarios where external knowledge is available. Secondly, the algorithm is 

nondeterministic, and is thus inconsistent.  

The OKM implementation applies the K-Means algorithm 50 times for each 

number of clusters (K=1 to 20 in our examples) and computes the BIC score for each 

application. The application that leads to the maximal BIC score is considered to be 

the optimal solution.  

Optimized QC (OQC) 

The QC algorithm [7] uses the Schrödinger equation to provide an effective clustering 

description of the data. It requires one parameter, σ, a Parzen window width. This 

parameter controls the number of clusters that are identified by the algorithm with 

larger values of σ yielding fewer clusters. Different σ may also yield the same number 

of clusters but different clustering assignments (see Fig. 2B). Contrary to K-Means 

this algorithm is deterministic, has less constraints than K-means (since noise is 

integrated within the model), and does not assume spherical properties of the clusters. 

Recently, a variation of the algorithm's convergence, using the mean-shift approach, 

was suggested [22]. Here we employ the standard implementation [7]. 

OQC consists of applying QC once for a set of σ values (50 values in the range of 

0.1 to 0.9, in our examples), and computes the BIC score for each σ. The maximal 

BIC is considered as the optimal solution.  

4. Results  

Here we describe our results on three gene-expression datasets that are well known 

benchmarks. In the first [23] and the second [24] examples, samples were clustered (2 

and 4 clusters, respectively) while in the third dataset [25] clustering was performed 

on the genes. All three cases have assignments that were manually curated. The 

assignments serve to estimate the performance of the clustering algorithms, using the 
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Jaccard score which reflects the ‘intersection over union' between the algorithm's 

clustering assignments and the expected classification4:  

 11

11 01 10

n
Jaccard

n n n
=

+ +
 

 (4) 

4.1. The colon dataset of Alon et. al. (1999) 

In the dataset of [23], 62 gene-expression samples were taken from colon cancer 

patients. 40 of them were taken from sick tissues, and 22 from healthy tissues. Each 

sample contains the expression of 7479 genes. We follow [23, 2 4] who chose 2000 

genes with the highest confidence in the measured expression levels. 

In order to emphasize the influence of preprocessing on the clustering results, we 

compare SVD (see methods) with Principal Components Analysis (PCA)5. Fig 1A 

displays the singular values of the [2000x62] matrix.  

The compression guidelines (see methods), suggests that only 2 or 3 components 

may be needed for a good description of the data (the relatively low entropy: 0.28, see 

equation 2). This yields compression rates of 1x10
-3
 and 1.5x10

-3
, respectively. 
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Fig. 1. A. (left) Singular values of the colon dataset (dashed line denotes the 'cut' decision). B. 

(right) Jaccard scores of the KM on raw data (left bar) and different preprocessing options.  

As shown in Fig. 1A, preprocessing procedure influences the clustering quality. 

We conclude that this step deserves substantial attention. Moreover, when selecting 

the correct compression method (SVD in 3 dimensions), the clustering results are 

improved, as reflected by the increase in the Jaccard score (from 0.52 to 0.6).  

The optimal results are obtained for SVD reduction to 3 dimensions. At this stage, 

the data are compressed to 62 vectors on a 3 dimensional unit sphere. Fig. 2A displays 

the OKM results (50 executions for 2-20 putative clusters) for different choices of K. 

For each K the maximal BIC of all 50 trials was chosen. The overall maximal BIC 

value is obtained for K=2. Note that the farther the number of clusters is from the 

                                                           
4 We refer to supplementary material for further explanation. 
5 Matlab code: princomp(zscore(X'X)). 
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correct solution, the larger is the dispersion of the corresponding BIC values. 

Comparing the internal (BIC) and external (Jaccard) criteria, one finds that the K=2 

assignments were also the closest to the experts opinion. This testifies to the 

usefulness of BIC as an indicator of the proper clustering of the data.  

Fig. 2. A. (left) BIC Values when applying OKM (SVD reduced to 3 dimensions) on the colon 

dataset. B. (right) The number of clusters obtained in the colon dataset as a function of the σ 

input parameter of the QC algorithm. 

Next we apply OQC to the compressed colon dataset. Recall that QC is a 

deterministic algorithm, thus, a single application is required for each σ value. Fig. 2B 

displays the number of clusters when varying σ. Note that different σ values may lead 

to the same number of clusters but different assignments, hence BIC may vary when 

the number of clusters remains constant. 
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Fig. 3. A. (left) Comparison of the internal (BIC) and external (Jaccard) criteria for the colon 

dataset (OQC). B. (right) Comparison of the standard and optimized versions of the KM and 

QC algorithms 

Both BIC and Jaccard scores display the same behavior in the neighborhood of their 

maximal values (Fig. 3A). The maximal BIC was obtained for σ=0.55, where QC 

leads to 2 clusters. The corresponding Jaccard score for this σ is 0.715. 

Since both OKM and OQC share the same preprocessing step, their clustering 

results can be compared. The maximal BIC value achieved by OQC is higher than the 

one achieved by OKM (-95 and -300, respectively). Similarly, the Jaccard score of the 
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OQC is higher than the one of OKM (0.715 and 0.678, respectively). Fig. 3B 

compares these results with what the same algorithms obtain on the original datasets 

without preprocessing (0.52 and 0.4 for KM and QC, respectively). The results are 

even more impressive when compared to other state-of-the-art algorithms (Table1). 

 

Table 1. Jaccard scores of various algorithms when applied to the Alon dataset  

Method Jaccard 

K-Means (raw data, 50 repeats) 0.52 (0.1) 

OKM (Preprocessing & BIC) 0.678 

QC (raw data) 0.4 

OQC (Preprocessing & BIC) 0.715 

CLICK [2] 0.64 

CAST [2,5] 0.682 

CTWC ([4], and
6
) 0.508 

 

4.2. The Leukemia dataset of Golub et al., 1999 

The dataset of Golub et al. has served as a benchmark for several clustering methods 

[2, 4 and 24]. The experiment sampled 72 leukemia patients with two types of 

leukemia, ALL and AML. The ALL set is further divided into T-cell leukemia and B-

cell leukemia and the AML set is divided into patients who have undergone treatment 

and those who did not. For each patient, an Affymetrix GeneChip measured the 

expression of 7129 genes. The clustering task is to find the four cancer groups within 

the 72 patients in a [7129x72] gene expression matrix. We select the first five 

eigenvectors, achieving a compression rate of 7x10
-4 

(from [7129x72] to [5x72]).  

BIC is maximized for K=2 in OKM, as is the Jaccard score (Fig. 4A). Hence we 

conclude that OKM can identify only the two major groups in the data and cannot 

detect a partition into four groups. This finding is consistent with the CAST and 

CLICK algorithms that have also failed to identify the subtypes [2] 

Since QC cannot be applied to the raw dataset, preprocessing is of essence. OQC 

proves to be very effective. As displayed in Fig. 4B, the correlation between the BIC 

and the Jaccard scores is quite high around the maximum of both curves. Moreover, 

the maximum BIC is at σ=0.548, which dictates partitioning into 4 clusters, similar to 

what would be expected from the data. The corresponding Jaccard score for this σ is 

0.69 (Fig. 4B). 4 clusters are predicted by QC throughout the range 0.47<σ<0.56. 

                                                           
6 http://www.weizmann.ac.il/physics/complex/compphys/ctwc/  
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Fig. 4. A. (left) BIC and Jaccard scores of the Golub dataset (OKM), B. (right)Comparison of 

internal (BIC) and external (Jaccard) criteria of the leukemia dataset (OQC) 

4.3. The Yeast dataset of Spellman et al. (1998) 

The dataset of [25] presents a somewhat more challenging task than the previous 

examples, since we examine our method on clustering of genes. Spellman et al. 

identified 798 genes as cell cycle regulated and assigned them to 5 different stages of 

the yeast cell cycle (M/G1, G1, S, G2 and M). Expression levels of these genes were 

recorded at 72 time points, yielding a [798x72] matrix. 

Contrary to the first examples, the distribution of relative variances is gradual and 

the entropy is significantly higher (0.705, see supplement). This result is consistent 

with the argument that high entropy reflects data that were preprocessed, since genes 

were intentionally selected by their functional annotation. We selected the first four 

leading eigenvectors (note the dashed line in the figure) achieving a compression rate 

of 5x10
-2 

(from [798x72] to [798x4]). 

The external expert [25] suggests that there are 5 groups of cell cycle related genes. 

When applying the OKM protocol to the compressed dataset a maximized BIC is 

observed at 6 clusters. Comparing to the standard application of K-Means, the OKM 

shows no improvement: both applications yield Jaccard scores of 0.4.  

Application of OQC to the compressed dataset yields a somewhat different result 

than that of OKM. BIC is maximized at σ=0.5, where 4 clusters are identified. Taking 

a closer look at the OQC clusters suggests that the S and G2 stages are joined by QC 

into one cluster. Here the correlation between the BIC and Jaccard scores is not 

perfect (see supplementary). Nevertheless, the Jaccard score it yields is relatively high 

(0.5 comparing to 0.4 in many other algorithms, see supplement table). 
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5. Conclusions  

We present a general ‘clustering improver’ scheme. This unsupervised, data-driven 

two-step clustering framework uses intrinsic properties of the dataset to determine the 

SVD-based compression. After dimension reduction, several iterations of a clustering 

algorithm are applied, each with a different parameter. They are then compared with 

each other by the BIC criterion. The parameter that yields the best BIC score is 

chosen and is declared to be the optimal one. This generic framework is also 

computationally efficient: it processes these large-scale datasets on a standard PC in 

less than a minute (e.g., 50 runs of each of the different number of clusters in OKM). 

Preprocessing of experimental data is an essential step. The raw data often come in 

a large-scale, un-normalized and noisy representation. These distractions have to be 

treated. Nevertheless, due to the diversity of the experiments one cannot provide a 

universal preprocessing method. In our study, we emphasize the importance of 

compression, and present some examples of the variations that different preprocessing 

methods can yield. We recommend SVD-based compression, which provides a 

normalized, filtered and ultra-compressed representation of the data. We also suggest 

guidelines regarding the extent of the compression.  

The second step of our methodology is parameter tuning, which is based on the 

BIC score. Choosing this score has two advantages: (1) being an internal 

measurement, it allows an unbiased, automated method with no external intervention, 

and (2) its capability to be computed after the algorithm has terminated its application 

allows this independent criterion to be ‘plugged in’ to any clustering algorithm.  

BIC is useful for finding the best solution amongst many local maxima, for both 

deterministic and nondeterministic clustering algorithms. Some heuristics are 

proposed in order to overcome the inconsistency problem of nondeterministic 

algorithms. In cases where many applications of the same algorithm lead to 

suboptimal solutions and only a few suggest good solutions, BIC maximization 

represents considerable improvement over other methods such as majority voting. 

Even if BIC does not point to the best clustering solution, it chooses one that is close 

to the best. It can therefore assist in narrowing down the search for best parameters.  

Our methodology is especially well adapted to algorithms that assume spherical 

distribution (e.g., K-Means) of clusters, but it can be applied to algorithms that do not 

assume such a distribution. Surprisingly, it performs very well for methods that do not 

subsume spherical clustering such as QC and SOM (not shown). The optimized 

algorithms described here outperform the published results of CTWC, CLICK and 

CAST. We assume the same methodology to the latter algorithms could improve their 

performance even further.  

Nevertheless, we identify some limitations. First, as we have not suggested any 

modification in any clustering algorithm per se, the improvement is bounded to the 

algorithm’s best performance. If the solution space does not describe the underlying 

structure of the dataset, we cannot obtain a high quality solution. 

Second, the BIC score assumes a specific hyper-elliptic organization of clusters. 

When, as in the yeast dataset, clusters have different distributions, BIC has less 

descriptive strength. In such cases BIC may not fit the properties of the dataset. Third, 

the BIC value, computed by the EM method, usually cannot converge when the 
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number of dimensions surpasses some threshold (of the order of 10). An efficient 

preprocessing is therefore a prerequisite for the BIC to be computed.  

Finally, since BIC fits a model to a specific data distribution, it cannot be used to 

compare models of different datasets. For the same reasons it cannot be used to 

choose among different preprocessing methods or truncated dimensions.  

Different clustering algorithms are currently included in analysis suites that are 

applied by experimentalists to gene expression data. A standard practice is to apply 

several algorithms with a few configurations and choose among them on the basis of 

some known classification. Our framework may serve as a platform for systematic 

comparison between different clustering algorithms. In all comparisons, analysis is 

applied to an identical experimental benchmark. The large variation in performance of 

each algorithm supports the notion that there is no 'one-size-fits-all' method. This 

study attempts to reduce the subjectivity in data interpretation by providing a platform 

for comparisons that can be adopted by any algorithm. 
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