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Abstract

The distributional principle according to which morphemes that occur in
identical contexts belong, in some sense, to the same category [1] has
been advanced as a means for extracting syntactic structures from corpus
data. We extend this principle by applying it recursively, and by us-
ing mutual information for estimating category coherence. The resulting
model learns, in an unsupervised fashion, highly structured, distributed
representations of syntactic knowledge from corpora. It also exhibits
promising behavior in tasks usually thought to require representations
anchored in a grammar, such as systematicity.

1 Motivation

Models dealing with the acquisition of syntactic knowledge are sharply divided into two
classes, depending on whether they subscribe to some variant of the classical generative
theory of syntax, or operate within the framework of “general-purpose” statistical or dis-
tributional learning. An example of the former is the model of [2], which attempts to
learn syntactic structures such as Functional Category, as stipulated by the Government
and Binding theory. An example of the latter model is Elman’s widely used Simple Recur-
sive Network (SRN) [3].

We believe that polarization between statistical and classical (generative, rule-based) ap-
proaches to syntax is counterproductive, because it hampers the integration of the stronger
aspects of each method into a common powerful framework. Indeed, on the one hand, the
statistical approach is geared to take advantage of the considerable progress made to date in
the areas of distributed representation, probabilistic learning, and “connectionist” model-
ing. Yet, generic connectionist architectures are ill-suited to the abstraction and processing
of symbolic information. On the other hand, classical rule-based systems excel in just those
tasks, yet are brittle and difficult to train.

We present a scheme that acquires “raw” syntactic information construed in a distributional
sense, yet also supports the distillation of rule-like regularities out of the accrued statisti-
cal knowledge. Our research is motivated by linguistic theories that postulate syntactic
structures (and transformations) rooted in distributional data, as exemplified by the work
of Zellig Harris [1].



2 The ADIOS model

The ADIOS (Automatic DIstillation Of Structure) model constructs syntactic representa-
tions of a sample of language from unlabeled corpus data. The model consists of two
elements: (1) a Representational Data Structure (RDS) graph, and (2) a Pattern Acquisition
(PA) algorithm that learns the RDS in an unsupervised fashion. The PA algorithm aims to
detectpatterns— repetitive sequences of “significant” strings of primitives occurring in
the corpus (Figure 1). In that, it is related to prior work on alignment-based learning [4]
and regular expression (“local grammar”) extraction [5] from corpora. We stress, however,
that our algorithm requires no pre-judging either of the scope of the primitives or of their
classification, say, into syntactic categories: all the information needed for its operation is
extracted from the corpus in an unsupervised fashion.

In the initial phase of the PA algorithm the text is segmented down to the smallest possible
morphological constituents (e.g.,ed is split off bothwalked andbed; the algorithm later
discovers thatbed should be left whole, on statistical grounds).1 This initial set of unique
constituents is the vertex set of the newly formed RDS (multi-)graph. A directed edge is
inserted between two vertices whenever the corresponding transition exists in the corpus
(Figure 2(a)); the edge is labeled by the sentence number and by its within-sentence index.
Thus, corpus sentences initially correspond topathsin the graph, a path being a sequence
of edges that share the same sentence number.
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Figure 1: (a) Two sequencesmi,mj ,ml and mi,mk,ml form a patternci{j,k}l
.=

mi, {mj ,mk},ml, which allowsmj andmk to be attributed to the same equivalence class,
following the principle of complementary distributions [1]. Both the length of the shared
context and the cohesiveness of the equivalence class need to be taken into account in
estimating the goodness of the candidate pattern (see eq. 1).(b) Patterns can serve as
constituents in their own right; recursively abstracting patterns from a corpus allows us
to capture the syntactic regularities concisely, yet expressively. Abstraction also supports
generalization: in this schematic illustration, two new paths (dashed lines) emerge from the
formation of equivalence classes associated withcu andcv.

In the second phase, the PA algorithm repeatedly scans the RDS graph forSignificant
Patterns (sequences of constituents) (SP), which are then used to modify the graph (Al-
gorithm 1). For each pathpi, the algorithm constructs a list of candidate constituents,
ci1, . . . , cik. Each of these consists of a “prefix” (sequence of graph edges), an equivalence
class of vertices, and a “suffix” (another sequence of edges; cf. Figure 2(b)).

The criterionI ′ for judging pattern significance combines a syntagmatic consideration (the
pattern must be long enough) with a paradigmatic one (its constituentsc1, . . . , ck must have
high mutual information):

I ′(c1, c2, . . . , ck) = e−(L/k)2
P (c1, c2, . . . , ck) log

P (c1, c2, . . . , ck)
Πk
j=1P (cj)

(1)

whereL is the typical context length andk is the length of the candidate pattern; the prob-
abilities associated with acj are estimated from frequencies that are immediately available

1We remark that the algorithm can work in any language, with any set of tokens, including indi-
vidual characters – or phonemes, if applied to speech.



Algorithm 1 PA (pattern acquisition), phase 2
1: while patterns existdo
2: for all path∈ graphdo {path=sentence; graph=corpus}
3: for all sourcenode∈ pathdo
4: for all sink node∈ pathdo {source and sink can be equivalence classes}
5: degreeof separation = pathindex(sink)− path index(source);
6: patterntable⇐ detectpatterns(source, sink, degreeof separation, equiva-

lencetable);
7: end for
8: end for
9: winner⇐ get most significantpattern(patterntable);

10: equivalencetable⇐ detectequivalences(graph, winner);
11: graph⇐ rewire graph(graph, winner);
12: end for
13: end while

in the graph (e.g., the out-degree of a node is related to the marginal probability of the cor-
respondingcj). Equation 1 balances two opposing “forces” in pattern formation: (1) the
length of the pattern, and (2) the number and the cohesiveness of the set of examples that
support it. On the one hand, shorter patterns are likely to be supported by more examples;
on the other hand, they are also more likely to lead to over-generalization, because shorter
patterns mean less context.

A pattern tagged as significant is added as a new vertex to the RDS graph, replacing the
constituents and edges it subsumes (Figure 2). Note that only those edges of the multi-
graph that belong to the detected pattern are rewired; edges that belong to sequences not
subsumed by the pattern are untouched. This highly context-sensitive approach to pattern
abstraction, which is unique to our model, allows ADIOS to achieve a high degree of
representational parsimony without sacrificing generalization power.

During the pass over the corpus the list of equivalence sets is updated continuously; the
identification of new significant patterns is done using thecurrent equivalence sets (Fig-
ure 3(d)). Thus, as the algorithm processes more and more text, it “bootstraps” itself and
enriches the RDS graph structure with newSPs and their accompanying equivalence sets.
The recursive nature of this process enables the algorithm to form more and more com-
plex patterns, in a hierarchical manner. The relationships among these can be visualized
recursively in a tree format, with tree depth corresponding to the level of recursion (e.g.,
Figure 3(c)). The PA algorithm halts if it processes a given amount of text without finding
a newSPor equivalence set (in real-life language acquisition this process may never stop).

Generalization. A collection of patterns distilled from a corpus can be seen as an empir-
ical grammar of sorts; cf. [6], p.63: “the grammar of a language is simply an inventory of
linguistic units.” The patterns can eventually become highly abstract, thus endowing the
model with an ability to generalize to unseen inputs. Generalization is possible, for exam-
ple, when two equivalence classes are placed next to each other in a pattern, creating new
paths among the members of the equivalence classes (dashed lines in Figure 1(b)). Gen-
eralization can also ensue from partial activation of existing patterns by novel inputs. This
function is supported by theinput module, designed to process a novel sentence by forming
its distributed representation in terms of activities of existing patterns (Figure 6). These
are computed by propagating activation from bottom (the terminals) to top (the patterns) of
the RDS. The initial activitieswj of the terminalscj are calculated given the novel input
s1, . . . , sk as follows:

wj = max
m=1..k

{I(sk, cj)} (2)



PATTERN  230: the cat is {eat, play, stay} -ing
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PATTERN  231:  BEGIN {they, we} {230} here

Figure 2: (a) A small portion of the RDS graph for a simple corpus, with sentence #101
(the cat is eat -ing) indicated by solid arcs.(b) This sentence joins a patternthe cat
is {eat, play, stay} -ing, in which two others (#109,121) already participate.(c) The
abstracted pattern, and the equivalence class associated with it (edges that belong to se-
quences not subsumed by this pattern, e.g., #131, are untouched).(d) The identification
of new significant patterns is done using the acquired equivalence classes (e.g., #230). In
this manner, the system “bootstraps” itself, recursively distilling more and more complex
patterns.

whereI(sk, cj) is the mutual information betweensk andcj . For an equivalence class, the
value propagated upwards is the strongest non-zero activation of its members; for a pattern,
it is the average weight of the children nodes, on the condition that all the children were
activated by adjacent inputs. Activity propagation continues until it reaches the top nodes
of the pattern lattice. When the algorithm encounters a novel word, all the members of
the terminal equivalence class contribute a value ofε, which is then propagated upwards
as usual. This enables the model to make an educated guess as to the meaning of the
unfamiliar word, by considering the patterns that become active (Figure 6(b)).

3 Results

We now briefly describe the results of several studies designed to evaluate the viability of
the ADIOS model, in which it was exposed to corpora of varying size and complexity.



propnoun:
 "Joe" | "Beth" |
"Jim" | "Cindy" |

"Pam" | "George";

is

verb:
working | living |

playing

article
"The" | "A"

noun:
"cat" | "dog" |
"cow" | "bird" |

"rabbit" |
"horse"

emphasize:
very |

extremely|really
far away

article
"The"

noun:
"cats" | "dogs" |
"cows" | "birds" |

"rabbits" |
"horses"

are

END

BEGIN
the horse is living very extremely far away.
the cow is working at least until Thursday.
Jim loved Pam.
George is staying until Wednesday.
George worshipped the horse.
Cindy and George have a great personality.
Pam has a fast boat.

(a) (b)

(c)
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PATTERN.ID=144
SIGNIFICANCE=0.11
OCCURRENCES=38
SEQUENCE=(120)+(101)
MEAN.LENGTH=29.4

Sentence: George is working extremely far away

144

Figure 3:(a) A part of a simple grammar.(b) Some sentences generated by this grammar.
(c) The structure of a sample sentence (pattern #144), presented in the form of a tree that
captures the hierarchical relationships among constituents. Three equivalence classes are
shown explicitly (highlighted).

Emergence of syntactic structures. Figure 3 shows an example of a sentence from a
corpus produced by a simple artificial grammar and its ADIOS analysis (the use of a sim-
ple grammar, constructed with Rmutt,http://www.schneertz.com/rmutt, in these initial
experiments allowed us to examine various properties of the model on tightly controlled
data). The abstract representation of the sample sentence in Figure 3(c) looks very much
like a parse tree, indicating that our method successfully identified the grammatical struc-
ture used to generate its data. To illustrate the gradual emergence of our model’s ability for
such concise representation of syntactic structures, we show in Figure 4, top, four trees built
for the same sentence after exposing the model to progressively more data from the same
corpus. Note that both the number of distinct patterns and the average number of patterns
per sentence asymptote for this corpus after exposure to about 500 sentences (Figure 4,
bottom).

Novel inputs; systematicity. An important characteristic of a cognitive representation
scheme is its systematicity, measured by the ability to deal properly with structurally related
items (see [7] for a definition and discussion). We have assessed the systematicity of the
ADIOS model by splitting the corpus generated by the grammar of Figure 3 into training
and test sets. After training the model on the former, we examined the representations of
unseen sentences from the test set. A typical result appears in Figure 5; the general finding
was of Level 3 systematicity according to the nomenclature of [7]. This example can be
also understood using the concept of generating novel sentences from patterns, explained
in detail below; the novel sentence (Beth is playing on Sunday) can be produced by
the same pattern (#173) that accounts for the familiar sentence (the horse is playing on
Thursday) that is a part of the training corpus.

The ADIOS system’s input module allows it to process a novel sentence by forming its
distributed representation in terms of activities of existing patterns. Figure 6 shows the
activation of two patterns (#141 and #120) by a phrase that contains a word in a novel
context (stay), as well as another word never before encountered in any context (5pm).
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Figure 4:Top: the build-up of structured information with progressive exposure to a corpus
generated by the simple grammar of Figure 3.(a) Prior to exposure.(b) 100 sentences.(c)
200 sentences.(d) 400 sentences.Bottom: the total number of detected patterns (4) and
the average number of patterns in a sentence (), plotted vs. corpus size.

Unseen: Beth is playing on Sunday.  the horse is playing on Thursday.
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Figure 5: (a) Structured representation of an “unseen” sentence that had been excluded
from the corpus used to learn the patterns; note that the detected structure is identical to
that of (b), a “seen” sentence. The identity between the structures detected in(a) and(b)
is a manifestation of Level-3 systematicity of the ADIOS model (“Novel Constituent: the
test set contains at least one atomic constituent that did not appear anywhere in the training
set”; see [7], pp.3-4).
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Figure 6: the input module in action (the two most relevant – highly active – patterns
responding to the inputJoe and Beth are staying until 5pm). Leaf activation is propor-
tional to the mutual information between inputs and various members of the equivalence
classes (e.g., on the leftW15 = 0.8 is the mutual information betweenstay andliv, which is
a member of equivalence class #112). It is then propagated upwards by taking the average
at each junction.

Working with real data: the CHILDES corpus. To illustrate the scalability of our
method, we describe here briefly the outcome of applying the PA algorithm to a subset of
the CHILDES collection [8], which consists of transcribed speech produced by, or directed
at, children. The corpus we selected contained 9665 sentences (74500 words) produced
by parents. The results, one of which is shown in Figure 7, were encouraging: the algo-
rithm found intuitively significantSPs and produced semantically adequate corresponding
equivalence sets. Altogether, 1062 patterns and 775 equivalence classes were established.
Representing the corpus in terms of these constituents resulted in a significant compres-
sion: the average number of constituents per sentence dropped from6.70 in the raw data to
2.18 after training, and the entropy per letter was reduced from2.6 to 1.5.
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1960 CHILDES_2764 : they don ’t want ta go for a ride ? 

you don ’t want ta look for another ride ? 

CHILDES_2642 : can we make a little house ? 

should we make another little dance ? 

CHILDES_2504 : should we put the bed s in the house ? 

 should we take some doggie s on that house ? 

CHILDES_1038 : where ’d the what   go ? 

  where are the what ’ s he gon ta do go ? 

CHILDES_2304 : want Mommy to show you ?

 like her to help they ? 

Figure 7:Left: a typical pattern extracted from a subset of the CHILDES corpora collec-
tion [8]. Hundreds of such patterns and equivalence classes (underscored in this figure)
together constitute a concise representation of the raw data. Some of the phrases that can
be described/generated by pattern 1960 are:where’s the big room?; where’s the yellow
one?; where’s Becky?; where’s that?. Right: some of the phrases generated by ADIOS
(lower lines in each pair) using sentences from CHILDES (upper lines) as examples. The
generation module works by traversing the top-level pattern tree, stringing together lower-
level patterns and selecting randomly one member from each equivalence class. Extensive
testing (currently under way) is needed to determine whether the grammaticality of the
newly generated phrases (which is at present less than ideal, as can be seen here) improves
with more training data.



4 Concluding remarks

We have described a linguistic pattern acquisition algorithm that aims to achieve a stream-
lined representation by compactly representing recursively structured constituent patterns
as single constituents, and by placing strings that have an identical backbone and similar
context structure into the same equivalence class. Although our pattern-based represen-
tations may look like collections of finite automata, the information they contain is much
richer, because of the recursive invocation of one pattern by another, and because of the
context sensitivity implied by relationships among patterns. The sensitivity to context of
pattern abstraction (during learning) and use (during generation) contributes greatly both to
the conciseness of the ADIOS representation and to the conservative nature of its generative
behavior. This context sensitivity — in particular, the manner whereby ADIOS balances
syntagmatic and paradigmatic cues provided by the data — is mainly what distinguishes it
from other current work on unsupervised probabilistic learning of syntax, such as [9, 10, 4].

In summary, finding a good set of structured units leads to the emergence of a convergent
representation of language, which eventually changes less and less with progressive expo-
sure to more data. The power of the constituent graph representation stems from the inter-
acting ensembles of patterns and equivalence classes that comprise it. Together, the local
patterns create global complexity and impose long-range order on the linguistic structures
they encode. Some of the challenges implicit in this approach that we leave for future work
are (1) interpreting the syntactic structures found by ADIOS in the context of contemporary
theories of syntax, and (2) relating those structures to semantics.
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