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Abstract

One of the central problems in computational biology is the classification of proteins into

functional classes given their amino acid sequence. In this thesis, we address the challenge

of predicting the function of enzymes by distilling biologically meaningful motifs from their

amino acid sequence. The motifs are obtained by applying a novel unsupervised motif extrac-

tion algorithm to a set of the oxidoreductases class of enzymes extracted from the Swiss-Prot

database. This motif extraction (MEX) algorithm is data driven, using the statistical informa-

tion present in the raw sequential data to identify significant segments that are not necessarily

over-represented in the data.

The application of MEX to the dataset of oxidoreductases enzymes yielded motifs of various

lengths. The space spanned by the extracted MEX motifs of length 6 and longer, serves as the

basis for functional classification of the oxidoreductases enzymes by an SVM classifier.

The performance of the SVM classification based on our MEX motifs is compared to those

of two other methods:

• SVM-Prot, an SVM classification method based on the analysis of physical-chemical

properties of a protein generated from its sequence of amino acids

• SVM-pairwise, an SVM classification based on the space spanned by the p-values ob-

tained by applying the Smith-Waterman pairwise sequence similarity algorithm to all

pairs of enzymes in the training set

The classification tasks carried out in our work were repeated on matched random par-

titions of the data into a train and a test set to accumulate statistics. The differences in

classification performance obtained by the various methods on the matched sets were exam-

ined statistically. The classification results based on our method surpassed that of the two

other methods.

Our findings indicate that the motifs extracted by MEX form an excellent basis for clas-

sifying the oxidoreductases enzymes into small classes known to have different functional

roles. Thus, MEX motifs support a successful sequence-to-function classification. Moreover,

our work provides additional insights regarding the existence of short peptides that hold bio-

logical information regarding the functionality of enzymes, supporting the usage of sequence

motifs for sequence analysis.
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1 Introduction

In this work, we explore the ability to predict the function of enzymes from their sequence

of amino acids by applying a novel unsupervised motif extraction (MEX) algorithm, coupled

with a machine learning classification method. We construct a machine that learns the motif

composition of enzyme sequences, according to which it generates the prediction about the

function of the enzymes. We first introduce the incentive to our work (section 1.1). We then

provide (section 1.2) a review of related work in the field of protein function prediction from

raw sequential data, showing the novelty and superiority of our method (section 1.3). Finally,

we overview the content of the following chapters.

1.1 Proteins function prediction

The complex functions of a living cell are carried out through the synchronous activity of

many genes and gene products, i.e., proteins. The ability to determine the function of the pro-

teins encoded in the genome is one of the fundamental elements in understanding biological

processes. Despite the rapid development in experimental techniques, such as DNA microar-

rays [24, 20], yeast two-hybrid system [7], RNA interference (RNAi) [12, 18] and many others,

experimental characterization of proteins for the purpose of elucidating their function lags far

behind the availability of new sequences. This rapid growth in available biological sequence

information creates new opportunities for studying the function of proteins and mechanisms

underlying complex biological processes. Deciphering these enormous amounts of data into

biological information is a challenging task.

One of the central problems in computational biology is the classification of proteins into

functional classes given their amino acid sequence. The earliest and most straightforward

computational method for assigning function to a protein is based on the detection of ho-

mologs with known function. Homologous proteins are proteins derived from a common an-

cestral sequence [13]. They have a similar three dimensional (3D) structure and are likely to

perform a similar function [30], at least at the molecular level. This is the basis of homology-

based function prediction, in which one infers the function of a protein by extrapolating the

knowledge from its experimentally characterized homologs.

Most computational methods can detect homology when the protein at hand shares a high

level of sequence similarity to other proteins. In some cases, the sequence of an unknown

protein is too distantly related to any protein of known function or structure to detect its

resemblance by using sequence similarity methods. Furthermore, homologous sequences

may share similarity only in a sub-region of the sequence. Therefore, detecting very subtle

sequence similarities, known as patterns or motifs, is of high importance for predicting the

function of proteins.

Sequence motifs arise due to particular requirements on the structure and amino acid

composition of specific regions of a protein which may be important, for example, for their

binding properties or for their enzymatic activity. These requirements impose very tight con-

straints on the evolution of those limited (in size) but highly important portions of a protein
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sequence. Appropriately chosen sequence motifs may be expected to reduce noise in the data

and indicate structural and active regions of the protein, hence improving predictability of its

function.

The use of protein sequence motifs to determine functions of proteins is rapidly becoming

one of the essential tools for sequence analysis. Our work fits well into the rapidly growing

efforts made to annotate newly sequenced genomes using computational methods.
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1.2 Related work in protein function prediction

It is commonly accepted that high sequence similarity guarantees functional similarity of pro-

teins. A contemporary analysis of enzyme function conservation by Tian and Skolnick [31]

suggests that 40% pairwise sequence identity can be used as a threshold to certify functional

similarity (i.e., the first three digits of the Enzyme Commission number (EC) are identical, see

section 2.1 for a detailed explanation). The golden standard of pairwise sequence similarity

methods is the Smith-Waterman algorithm [26] and its heuristic, faster version BLAST [1].

Using pairwise sequence similarity scores, obtained by applying the Smith-Waterman algo-

rithm, combined with the Support Vector Machine (SVM) classification method [25, 14], Liao

and Noble [19] have argued that their SVM-pairwise method obtains a siginificantly improved

remote homology detection relative to existing state-of-the-art algorithms such as the SVM-

Fisher method [17] (i.e., an SVM trained on features extracted from Hidden Markov Models).

Another sequence-based approach to the task of protein classification is a method based on

the general characteristics of the sequence, such as the number of specific amino-acids within

it, as described in [9]. A recent variation of this approach represents the amino-acid sequence

as a sequence of physical-chemical features [5, 6], such as hydrophobicity, normalized Van

der Waals volume, polarity, polarizability, charge, surface tension, secondary structure and

solvent accessibility. Cai et al. [5, 6] have applied SVM to these feature vectors and reported

that their SVM-Prot technique reaches a high degree of accuracy at the subclass level (i.e.,

two digits of the EC number hierarchy), on various enzyme subclasses.

An alternative to the straightforward sequence similarity approach is the usage of motifs.

A protein can then be represented as a bag of motifs [2] (i.e., neglecting their particular

order on the linear sequence), or a vector in a space spanned by these motifs. A recent

work by Ben-Hur and Brutlag [3], based on the eMOTIF approach [15, 23], led to very good

results. They based their analysis on ∼60,000 regular expression eMOTIFs, and by using

an appropriate feature selection method [33] they obtained success rates well over 90% for a

variety of classifiers.

1.3 Our Approach to protein function prediction

In this thesis we study the problem of enzymes function prediction from their sequence of

amino acids. Our approach to protein function classification is motif based. Appropriately

chosen sequence motifs may be expected to reduce noise in the data and indicate struc-

tural and active regions of the protein, hence improving the predictability of its function. We

attempt to identify biologically meaningful sequence motifs that reflect various functional as-

pects of enzymes and exploit the space spanned by these motifs as the basis for functional

classification by an SVM classifier. The novelty of our approach is in the employed motif ex-

traction algorithm (MEX). Conventional approaches [11, 15] construct motifs from multiple

sequence alignments of related sequences and express them as position specific weight matri-

ces or regular expressions. Other methods use hidden Markov models and Bayesian networks

[17],hence are supervised to some extent. MEX extracts motifs from proteins sequential data

in an unsupervised manner, without requiring over-representation of its amino-acid motifs in

3



the data set. In contradistinction to position-specific weight matrices or regular expressions,

MEX motifs are explicit strings.

Due to the fact that the Smith-Waterman algorithm is the most established pairwise se-

quence similarity method, we have chosen to replicate the experimental procedure described

in [19] and use the obtained results. For the SVM-Prot method, the results are obtained

from their published results [5, 6]. The classifications performance based on MEX motifs,

outperform that of the two other SVM based methods (i.e., SVM-Prot and SVM-pairwise).

1.4 Outline

The outline of this thesis is as follows. In chapter 3 we provide information about the datasets

we have used in our work, the preprocessing procedure for obtaining the required represen-

tations for the SVM classifier (i.e., the vectorization step) and information about the various

classification tasks.

Chapter 4 is intended to provide a thorough explanation of the motif extraction (MEX)

algorithm. We then provide an explanation of the Smith-Waterman local alignment algorithm

employed in this work.

Finally, we briefly describe the SVM algorithm we have chosen to use as our machine

learning classification tool. Chapter 5 contains the results of performing the classification

tasks and the comparison between the results obtained by the different methods. Finally,

chapter 6 contains the concluding remarks as well as a discussion regarding missing aspects

in our work, presenting the challenges awaiting to be addressed.

4



2 Learning the function of enzymes

This chapter describes how is the function of an enzyme defined throughout this work. Fur-

thermore, it describes the preprocessing procedures applied to the dataset for SVM classifica-

tion.

2.1 Determining the function of an enzyme

The function of an enzyme is specified by a name and a number given to it by the Enzyme

Commission (EC) classification hierarchy [32]. The EC number consists of four numbers,

n1:n2:n3:n4, corresponding to the four levels of classification hierarchy. The first level of the

classification hierarchy (n1) includes six classes: Oxidoreductases, Transferases, Hydrolases,

Lyases, Isomerases and Ligases. The remaining levels have divisions that are unique to each

of the six classes.

The oxidoreductases class of enzymes, discussed in this work, catalyze the transfer of

electrons from one molecule (i.e., the electron donor) to another molecule (i.e., the electron

acceptor). For this class, n1=1, n2 (subclass) specifies the electron donors, n3 (sub-subclass)

specifies the electron acceptors and n4 indicates the enzyme’s substrate.

2.2 Data preprocessing for SVM classification

Each of the methods presented in our work (i.e., SVM classification based on MEX motifs,

SVM-pairwise and SVM-Prot) consist of two steps:

• converting the given set of enzyme sequences into vectors in some feature space

• training the SVM classifier on the vectorized enzymes

The methods differ only in the vectorization step, i.e., the SVM training and testing pro-

cedure is identical. The following subsections describe the process of converting the enzyme

sequences into the vectors the SVM classifier is given as an input.

5



2.2.1 MEX vectorization step

The oxidoreductases sequences are converted to MEX motifs vectors by representing each

sequence as a ”bag of motifs”, neglecting the motifs particular order on the linear sequence.

Hence, each enzyme sequence is represented by the MEX motifs the enzyme holds. Figure 2.1

illustrates MEX’s vectorization process.

MEX motifs representation

> O17433   EC 1.11.1.15

KFPDF  EIRVLDK  VIISAP

> O17433   EC 1.11.1.15 

MTGIKFPDFKFFEIRVLDKGFIPSFYDWVIISAP

Enzyme sequence

TCALRPMYIYGE

EIRVLDK

LDKVFRPET

VIISAP

KFPDF

SFPLSLM

MEX motifs

Figure 2.1: Representation of an enzyme sequence by its MEX motifs content. The left upper
pane shows the list of obtained MEX motifs. The red motifs are motifs contained on the
enzyme sequence appearing in the right upper pane. The lower pane shows the representation
of the enzyme by its MEX motifs content.
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2.2.2 Smith-Waterman vectorization step

The SVM-pairwise method, utilizes the Smith-Waterman algorithm [26] to perform a one-

versus-all sequence similarity comparison. The Smith-Waterman algorithm has been applied

to the oxidoreductases dataset. The ariadne tool [21] has been used (available online at

http://www.well.ox.ac.uk/ariadne) in order to obtain the p-values distances matrix, SWM,

defining the feature space of the SVM classifier. A minimal p-value threshold of 10−6 was

imposed to allow usage of p-values logarithm. The SWM matrix is normalized so that each

vector has the length of 1 in the feature space, i.e., K(X, Y ) = X·Y√
(X·X)(Y ·Y )

. Let us denote the

obtained normalized distances matrix as SWD. The obtained SWD matrix is given as an input

to the SVM classifier.

0.012 0.004 0.0001 0.0045 0.03Pk

P1 P2 P3 Pk Pn

Smith – Waterman p-values representation

s(Pk,P3)

Figure 2.2: Representation of an enzyme as a vector of pairwise similarity scores. The enzyme
Pk is represented as a vector if scores. The score function S(·, ·) is computed using the Smith-
Waterman local alignment algorithm. The vectorization set P1, P2, P3, . . . , Pk, . . . , Pn is the
set of enzymes that appear in the training set.
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2.2.3 SVM-Prot vectorization step

The SVM-Prot method represents each enzyme sequence by a specific feature vector assem-

bled from encoded representations of tabulated residue properties: amino acid composition,

hydrophobicity, normalized Van der Waals volume, polarity, polarizability, charge, surface

tension, secondary structure and solvent accessibility. For each residue in the sequence,

Three descriptors, composition (C), transition (T) and distribution (D), are used to describe

global composition of each of these properties [10] (see [5, 6] for further details). C is the

number of amino acids of a particular property (for instance: hydrophobicity) divided by the

total number of amino acids. T characterizes the percent frequency with which amino acids of

a particular property is followed by amino acids of a different property. D measures the chain

length within which the first, 25%, 50%, 75% and 100% of the amino acids of a particular

property is located respectively.

8



3 The Data

This chapter describes the source of the datasets to which we have applied our research

methods.

3.1 The oxidoreductases dataset

We have concentrated our analysis on the oxidoreductases class of enzymes. To achieve

our research goal, a high-quality, well-defined dataset of annotated enzyme sequences was

required. Enzyme sequences (i.e., annotated with EC numbers, where n1=1) were extracted

from the UniProt/Swiss-Prot database Release 48.3 25-Oct-2005.

The sequences were strictly screened according to remove the following sequences:

• sequences shorter than 100 amino acids or sequences longer than 1200 amino acids

(i.e., indicated as ’Fragment’);

• sequences with imprecise annotation (i.e., indicated as ’Probable’ or ’Hypothetical’ or

’Putative’ or partially specified EC number)

• enzymes that catalyze more than one reaction (i.e., indicated as ’Bifunctional’ or ’bifunc-

tional’ or annotated with more than one EC number)

Following the aforementioned screening procedure, the dataset contained 9437 enzyme

sequences. Motifs were extracted by applying MEX to the obtained dataset.

Table 1 summarizes the subclasses & sub-subclasses data of Swiss-Prot release 48.3. 7.

EC class # of subclasses # of sub-subclasses
Swiss-Prot release 48.3 21 81

Table 1: Number of subclasses & sub-subclasses in the dataset

3.2 The Prosite dataset

To test whether the obtained MEX motifs carry relevant biological information we used the

PROSITE [16] database. We extracted the PROSITE patterns from Release 19.2 of 24-May-

2005 (available online at: ftp://ftp.expasy.org/databases/prosite/).

To extract the set of protein sequence signatures that appear on the enzyme sequences

MEX was applied to we used the ps scan tool, provided by PROSITE (available online at:

ftp://ftp.expasy.org/databases/prosite/tools/)

9



4 Methods

The goal of our research was to explore the ability to predict the function of enzyme’s from

their sequence of amino acids using our motif extraction (MEX) algorithm. In order to examine

whether the extracted motifs convey information regarding the functionality of the enzyme’s,

each enzyme was represented by its MEX motifs content and the capability of the classifier to

predict the function of the enzyme, based on the described representation, was tested.

Due to computational and comparative considerations we have chosen to use the SVM

algorithm as our classifier.

The following chapter describes in detail the motif extraction algorithm and provides a

concise intuitive description of the Smith-Waterman pairwise sequence similarity algorithm

and the SVM algorithm.

4.1 The motif extraction (MEX) algorithm

MEX is a motif extraction algorithm that serves as the basic unit of ADIOS [27, 28, 29],

an unsupervised algorithm for the extraction of syntax from linguistic corpora. It discovers

structure in any sequence data, on the basis of the minimal assumption that the dataset at

hand contains partially overlapping segments.

4.1.1 The intuition behind MEX

To explain the intuition behind MEX let us suppose that our dataset is generated by ran-

domly sampling a set of short predefined sequences. Consider a MEX scan that starts at the

beginning of such a sequence, s = e1e2 . . . en, and proceeds through the first i symbols (i.e.,

e1 . . . ei). As i approaches n, the probability of observing the first i symbols by chance (i.e., not

as a part of the sequence s) approaches zero, and the conditional probability P (ei+1|e1 . . . ei)
correspondingly increases. When i = n, though, the observed history places no constraints

on the next symbol, and the conditional probability for observing the next symbol is likely to

be significantly smaller than P (en|e1 . . . en−1). Hence, segmentation is performed at the edge

of determinism, where the observed history ceases to be a good predictor of the next symbol.

Figure 4.1 shows a partially aligned segment which we consider a MEX motif.

10
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Figure 4.1: A MEX motif.

4.1.2 Description of the algorithm

Consider a dataset of sequences of variable length. Each sequence is expressed in terms of

an alphabet of finite size N (i.e., N=20 amino-acids in proteins). The N letters form the vertices

of a directed multi graph (i.e., a non-simple graph in which both loops and multiple edges

are permitted). The algorithm starts by loading the dataset sequences onto the graph. Each

sequence in the dataset defines an ordered path over the graph (i.e., the sequence is indexed

by the order of its appearance in the dataset).

In terms of conditional probabilities (i.e., all p(ej |ei)) the graph defines a variable order

Markov model up to order k, where k is the length of the ordered path being placed on the

graph.

Loading is followed by a right and a left scan of the graph in search for candidate motifs.

For each ordered path, (e1; ek) := e1e2 · · · ek, we define a right-moving probability function,

it’s value ∀ 1 ≤ i, j ≤ k being:

PR(ei; ej) = p(ej |eiei+1ei+2...ej−1) =
l(ei; ej)

l(ei; ej−1)
(4.1)

where l(ei; ej) is the number of occurrences of the sub-path ei, ei+1, . . . , ej in the graph.

A drop in the right-moving probability function is defined by:

DR(ei; ej) = PR(ei; ej)/PR(ei; ej−1) (4.2)

The drop in the right-moving probability function is bounded by a threshold parameter

η. Therefore, if DR(ei; ej) < η then ej−1 is defined as the ending edge of the right candidate

motif, CR = ei . . . ej−1. PR is calculated from all possible starting points (i.e., ∀i, i = 1, . . . , k− 1),

traversing the paths from left to right.
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Once all right candidate motifs are located, the graph is analogously scanned from left to

right. Hence, we define a left-moving probability function:

PL(ej ; ei) = p(ei|ei+1ei+2...ej−1ej) =
l(ej ; ei)

l(ej ; ei+1)
. (4.3)

where l(ej ; ei) is the number of occurrences of the sub-path ej , ej−1, . . . , ei in the graph.

A drop in the left-moving probability function is defined by:

DL(ej ; ei) = PL(ej ; ei)/PL(ej ; ei+1) (4.4)

The drop in the left-moving probability function is, analogously, bounded by the threshold

parameter η. Therefore, if DL(ej ; ei) < η then ei+1 is defined as the ending edge of the left

candidate motif, CL = ej . . . ei+1. PL is calculated from all possible starting points (i.e., ∀j,
j = k, . . . , 2), traversing the paths from right to left.

Since the experimental probabilities, PR(ei; ej) and PL(ej ; ei), are determined by a finite

number of paths, a statistical measure is introduced to avoid erroneous results. Hence, we

calculate the statistical significance of both DR(ei; ej) and DL(ej ; ei) by requiring them to be

smaller than a predefined parameter α < 1.

Therefore, if

B(ei, ej) =
l(ei,ej)∑

x=0

Bin(l(ei, ej−1), ηPR(ei; ej−1)) < α (4.5)

then ei . . . ej−1 is a significant right motif. Analogously, if

B(ej , ei) =
l(ej ,ei)∑

x=0

Bin(l(ej , ei+1), ηPL(ej ; ei+1)) < α (4.6)

then ej . . . ei+1 is a significant left motif.
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Once all right and left significant motifs are located, we search for MEX motifs. Figure 1

demonstrates the type of structures we expect to find in our graph. A MEX motif is shown as

the assimilation of paths over a subsequence. The criteria for motif selection are defined by

local maxima of PL and PR signifying, respectively, the beginning and ending of a motif.

Figure 4.2: The definition of a motif within the MEX algorithm. Descents in PL and PR,
following the maxima, signify the divergence of paths. Hence, defining the boundaries of the
right and left motifs.
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Let CR = ei . . . ej−1, i < j denote a right significant motif and let eRi denote the edge at

which the increase in PR has begun. Analogously, Let CL = ej . . . ei+1, i < j denote a left

significant motif and let CLi denote the edge at which the increase in PL has begun. For each

such pair of right significant motif and left significant motif, CR and CL, we say that the right

and left motifs intersect if the maximal index between the index of edge at which the increase

in PR has begun (i.e., arg(eRi)) and the index of the edge at which CL ended (i.e., i + 1) is

smaller then the minimal index between the index of the edge at which the increase in PL

has begun (i.e., arg(eLi)) and the index of the edge at which CR ended (i.e., j − 1). Hence, if

max(arg(eRi), i + 1) < min(arg(eLi), j − 1) then ei+1 . . . ej−1 is a MEX motif.

Once the algorithm reaches the stop criteria (i.e., ceases to locate new motifs) the sequences

are ”rewired” according to their MEX motifs content. Hence, the obtained motifs are sorted

in a length-significance descending order, by which their loci are identified and placed on the

original sequences.

In our work we applied MEX to the set of Oxidoreductases enzymes using the following

parameters: η = 0.9, α = 0.01.

4.2 The Smith-Waterman local alignment algorithm

The Smith-Waterman algorithm [26] is a well-known algorithm for performing local sequence

alignment (i.e., determining similar regions between two nucleotide or protein sequences). It

is a dynamic programming algorithm and as such, it guarantees to find the optimal local

alignment with respect to the scoring system being used (i.e., a substitution matrix and a

gap-scoring scheme).

As opposed to global sequence alignment algorithms, which look at the entire sequence, the

Smith-Waterman algorithm compares segments of all possible lengths and chooses whichever

maximizes the similarity measure.

4.2.1 Description of the algorithm

In order to find the optimal local alignment of two sequences, a two-dimensional matrix,

containing information about every position of the sequence is filled. This is done with a

recurrence relation that is specific to the Smith-Waterman algorithm:

Fi,j =


0
Fi−1,j−1 + s(xi, yi)
Fi−1,j + d

Fi,j−1 + d

(4.7)
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Where:

• Fi,j is the value at the (i, j) position in the matrix.

• s(xi, yj) is the value obtained from the substitution matrix for the amino acids (x, y)
corresponding to the (i, j) position in the matrix.

• d is the opening gap penalty. The affine gap penalty function is usually given by: f(n) =
d + e(n − 1), where n = length of the gap, d = opening gap penalty, e = extension gap

penalty.

Figure 4.3 is an example of filling up the matrix with two short protein sequences using

the BLOSUM62 substitution matrix with d = -12 and e = -2. The position (i=1,j=1) is obtained

as follows:

F (1, 1) = max {0, F (0, 0) + s(G, G), F (0, 1)− 12, F (1, 0)− 12} = max {0, 6,−12,−12} = 6 (4.8)

F S

G

G

K

L

F

L

0.0 0.0 0.0 0.0

0.0

0.0

6.0

0.0

0.0 0.0

0.0 4.0

0.0

0.0

0.0

0.0 0.0

0.0

4.0 4.0

1

2

3

4 0.0 2.0

1 2 3 4

0.0

10.0

0.0

Figure 4.3: The dynamic programming matrix generated by aligning GLFS with GKLF. The
red arrows indicate where the values come from and the yellow squares indicate the optimal
alignment. In order to find the optimal alignment(s), the maximum value(s) must be found
and traced back until the value of F (i, j) is equal to 0.
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To construct the alignment graphically, these three rules must be followed:

• If the value comes from the position (i-1,j-1), the amino acids (xi,yj ) are aligned together

• If the value comes from the position (i,j-1), the amino acid yj is aligned with a gap ’ ’.

• If the value comes from the position (i-1,j), the amino acid xi is aligned with a gap ’ ’.

The optimal alignment is obtained by starting from the position that has the maximum

value (in this case, F(i = 4,j = 4) = 10) and by following back the appropriate red arrows.

Hence, the optimal alignment is LF.

In our work we applied the Smith-Waterman algorithm to the set of oxidoreductases using

the ariadne [21] tool (available online at: http://www.well.ox.ac.uk/ariadne/onepage.html).

We have used BLOSUM62 as our substitution matrix and the following gap-scoring scheme:

gap opening penalty = 11, gap extension penalty = 1.

4.3 SVM - Support Vector Machines

This section is meant to provide an introduction to the basic concepts of SVMs (Support

Vectors Machines). SVM [4, 14, 22, 8] is a known supervised learning method used for classi-

fication and regression. In our work, we have used SVM for classification, therefore only the

former case will be discussed.

The original formulation of SVM was for the problem of binary classification. Let us start

by defining the notion of a classification task. Given a set of data points labeled as +1 if they

belong to the target class (i.e., positive examples) and −1 if they do not belong to the target

class (i.e., negative examples). The task is to ”teach” the classifier, using the given data points,

to predict whether a new data point does or does not belong to the target class. SVMs operate

by trying to find a hyperplane in the space of possible inputs (i.e., training data) that separates

the positive examples from the negative examples.
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4.3.1 Maximum Margin Linear SVMs

The simplest kind of SVM (Linear SVM) suits the case of linearly separable data (i.e., if all the

data points can be correctly classified by a linear hyperplane). Figure 4.4 illustrates linearly

separable data.

Figure 4.4: Linearly separable data. The red dots denote class1 and blue dots denote class2.

Figure 4.5 illustrates non linearly separable data.

Figure 4.5: Non linearly separable data. The red dots denote class1 and blue dots denote
class2.

17



As demonstrated in figure 4.4, there is more than one possible separating hyperplane.

Naturally, we are interested in the hyperplane that provides us with the ”best” separation

(i.e., leads to the minimal number of training errors). This is obtained by selecting the hyper-

plane with the maximal margin, where the margin is defined as the width that the separating

hyperplane could be increased by before hitting a data point. Hence, we disregard points

that are within some fixed positive margin of the hyperplane. This guarantees that a slight

misplacement of the separating hyperplane will cause a minimal misclassification.

The Support Vectors are the data points lying on the edge of the margin, as demonstrated

in figure 4.6.

Figure 4.6: The support vectors are the data points lying on the edge of the margin.

The solution for the problem of finding the optimal separating hyperplane (i.e., comput-

ing the margin) is based on the concepts of Structural Risk Minimization (SRM) and VC-

dimension, and is obtained by representing the problem as a quadratic optimization problem,

using standard optimization algorithms.

4.3.2 Soft Margin Linear SVMs

To make it a generally applicable tool, an SVM should be able to handle cases in which the

classes overlap. The Soft Margin method chooses a hyperplane that separates the examples

as cleanly as possible, while still maximizing the distance to the nearest cleanly separated

examples. If the data has noise and outliers, a smooth decision boundary that ignores a

few data points is better than one that loops around the outliers. To allow a soft margin,

additional constraints (i.e., slack variables) are added to the equation used to compute the

margin. The slack variables allow a point to be a small distance on the wrong side of the

hyperplane without violating the constraints of the equation used to compute the margin.

To assure that the deviations from the ”correct” location are indeed small, large slacks are

penalized in the equation used to compute the margin.
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4.3.3 Non Linear SVMs

We would like to use the same methodology in cases where the separating hyperplane is

not a linear function of the data. The non linearly separable data points are transformed

to a different space by using a tractable kernel-based technique, then a linear separating

hyperplane is found in the new feature space.

The original data points are mapped to some other high dimensional Euclidean space using

a kernel method. Kernel methods exploit information about the inner products between the

data points. The data is processed using Φ : X → H, x → φ(x) where H is a dot product space,

and the mapping of φ(x) is learned from the label of the original data point (i.e., +1 / −1).

Thus, the kernel is a non-linear similarity measure.

Examples of common kernels:

• Polynomial: k(x, x
′
) = (< x, x

′
> +c)d

• Radial Basis Function (RBF / Gaussian): k(x, x
′
) = exp(− ||x−x

′
||

2σ2 )

• Sigmoid : k(x, x
′
) = tanh(k < x, x

′
> +Θ), for k > 0 and Θ < 0

Figure 4.7 demonstrates an example of non linearly separable data in R2.

x1

X2

Figure 4.7: The non linearly separable data points in the original R2 space. Image is taken
from [22].
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When applying the kernel function Φ : (x1, x2) → (x2
1,
√

2x1x2, x
2
2), one obtains linearly sepa-

rable data in R3 as shown in figure 4.8.

Z1

Z3

Z2

Figure 4.8: Original data is mapped to a higher dimensional Euclidean space where the data
is linearly separable. Image is taken from [22].
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5 Results

5.1 The classification procedure

The various classification tasks correspond to subclasses and sub-subclasses that contain

more than 20 enzyme sequences. (see Appendix C, Tables 7 and 8 for the full list). As

disclosed in Table 7, there are 20 classification tasks at the subclass level, corresponding

to 20 subclasses that contain more than 20 enzyme sequences. Correspondingly, Table 8

indicates that at the sub-subclass level there are 54 classification tasks, corresponding to

54 sub-subclasses that contain more than 20 enzyme sequences. Hence, enzymes function

prediction is defined in terms of predicting the first two digits of the EC number (subclass

level) and the first three digits of the EC number (sub-subclass level).

The oxidoreductases dataset has been preprocessed in order to produce an appropriate

input file for the learning tasks. A random 75% : 25% partition of the data into a training

set and a testing set, respectively, has been used for each learning task. The train - test pro-

cedure was repeated on 45 different random partitions of the dataset in order to accumulate

statistics.

As our SVM classifier we have used the SVM-Light software

(available online at http://svmlight.joachims.org/). For each of the classification tasks we

have used a soft margin linear SVM.

5.2 Performance measurement

As our classification performance measurement we have chosen to use the Jaccard score,

defined as follows:

J =
TP

TP + FP + FN
(5.1)

where TP, TN, FP and FN denote the number of true positive, true negative, false positive, and

false negative outcomes respectively. There are other performance criteria, such as the one

used by Cai et al. for the SVM-Prot method [5, 6]:

Q =
TP + TN

TP + TN + FP + FN
(5.2)

Since the large negative set used in each classification task quickly yields a high Q value,

the Jaccard score is a more discriminative performance measurement.
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5.3 Motif selection

Applying MEX to the set of oxidoreductases gave rise to 27,471 MEX motifs of various lengths.

Figure 5.1 shows the distribution of the entire set of MEX motifs. Note the peak at motifs of

length 6 and the drop that follows at motifs of lengths 7 and 8.
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Figure 5.1: Distribution of MEX motifs.
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Obviously, MEX is not perfect and returns spurious motifs. Therefore, we used feature

selection process. A series of experiments was conducted in order to evaluate the influence of

length dependent sets of MEX motifs on the data coverage (i.e., number of enzyme sequences

represented by MEX motifs) and on the performance of the SVM classifier on the various

classification tasks. It is important to note that the dataset coverage varies according to the

subset selection of MEX motifs.

The classification performance was tested using various length dependent subsets of MEX

motifs. Table 2 summarizes the results of the classification tasks (for both subclass level and

sub-subclass level) and the corresponding dataset coverage.

motifs subset # of motifs Avg. 2nd level Avg. 3rd level coverage (%)
motifs length ≥ 4 23994 0.84± 0.02 0.83± 0.04 100% (9437)
motifs length ≥ 5 20360 0.89± 0.02 0.85± 0.07 99% (9333)
motifs length = 6 4165 0.90 ± 0.03 0.80 ± 0.05 80% (7533)
motifs length ≥ 6 16382 0.92 ± 0.02 0.90 ± 0.04 95% (8933)
motifs length ≥ 7 12217 0.92± 0.02 0.91± 0.04 90% (8496)
motifs length ≥ 8 9024 0.93± 0.02 0.89± 0.1 85% (8011)
motifs length ≥ 9 7041 0.93± 0.02 0.89± 0.1 79% (7512)

Table 2: Classification performance and coverage percentage for various length dependent
subsets of MEX motifs.

5.3.1 Summary

The peak at MEX motifs of length 6 in figure 5.1 accounts for the finding that MEX motifs of

length 6 yields both a high classification result (i.e., average Jaccard score is: 0.90 ± 0.03)

and a high data coverage (i.e., 80% of the sequences in the dataset).

The classification results, using various length dependent subsets of MEX motifs, show

that the classification task performed by the subset of 16,382 motifs of length 6 and longer

yields a 0.92 Jaccard score on average for subclass level and a 0.90 Jaccard score on average

for sub-subclass level. Furthermore, this subset of MEX motifs covers 95% (8933) of the

oxidoreductases enzyme sequences to which MEX was applied. This subset of MEX motifs

give rise to the best average Jaccard score - coverage ratio, therefore we chose to perform the

classification using this subset of MEX motifs.
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5.4 SVM functional classification based on MEX motifs of length 6 and
longer

5.4.1 SVM functional classification - subclass level

Figure 5.2 presents the subclass level classification results obtained using the set of MEX

motifs of length 6 and longer. Note that there is no correlation between the size of the subclass

(i.e., number of sequences in the subclass) and the accuracy of the classification. Correlation

was tested using the Spearman correlation at a 0.05 level of confidence. The weighted average

Jaccard score obtained at the subclass level is: 0.92 ± 0.02.

1.1 1.2 1.6 1.14 1.3 1.9 1.8 1.17 1.11 1.15 1.4 1.5 1.7 1.18 1.10 1.13 1.16 1.12 1.21 1.97
0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.95

1

EC subclass

Ja
cc

ar
d

 s
co

re

1.1 1.2 1.6 1.14 1.3 1.9 1.8 1.17 1.11 1.15 1.4 1.5 1.7 1.18 1.10 1.13 1.16 1.12 1.21 1.97
0

250

500

750

1000

1250

1500

1750

2000

2250

2500

EC subclass

# 
o

f 
se

q
u

en
ce

s 
in

 s
u

b
cl

as
s

Figure 5.2: Subclass level MEX based classification results.
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Table 3 summarizes the classification results for the various methods at the subclass

level. We have used SVM-Prot published results, since their published results do not contain

standard deviations none are indicated. Furthermore, their published results do not include

classification performances for each subclass in our set, hence empty cells indicate such

cases. Note that ** denotes the subclasses for which our MEX based classification results

were significantly higher than those obtained by the Smith-Waterman based classification.

Analogously, * denotes the subclasses for which the Smith-Waterman based classification

results were significantly higher than those obtained by our MEX based classification.

Significance was tested using the Wilcoxon signed rand test at a 0.01 level of confidence.

EC subclass # of sequences MEX SW SVM-Prot
1.1 2444 0.94 ± 0.008 0.93 ± 0.012 0.80
1.2 1013 0.90 ± 0.018 0.89 ± 0.022 0.78

** 1.6 970 0.91 ± 0.017 0.83 ± 0.03 0.88
** 1.14 777 0.90 ± 0.021 0.77 ± 0.155 0.77
** 1.3 641 0.82 ± 0.030 0.70 ± 0.038 0.61
1.9 575 0.96 ± 0.016 0.94 ± 0.016 0.95

** 1.8 513 0.92 ± 0.031 0.82 ± 0.035 0.64
* 1.17 423 0.92 ± 0.027 0.98 ± 0.013 0.77
* 1.11 379 0.91 ± 0.03 0.93 ± 0.018 0.78
1.15 310 0.95 ± 0.022 0.97 ± 0.013 0.89
** 1.4 299 0.90 ± 0.028 0.73 ± 0.055 0.66
** 1.5 218 0.81 ± 0.06 0.40 ± 0.061 0.39
** 1.7 196 0.89 ± 0.042 0.64 ± 0.06 0.73
** 1.18 171 0.90 ± 0.056 0.70 ± 0.07 0.79
** 1.10 148 0.88 ± 0.055 0.72 ± 0.077 0.69
** 1.13 147 0.84 ± 0.052 0.58 ± 0.01 0.77
** 1.16 76 0.93 ± 0.062 0.74 ± 0.065 -
** 1.12 67 0.73 ± 0.112 0.67 ± 0.117 -
** 1.97 34 0.84 ± 0.114 0.67 ± 0.168 -
** 1.21 20 0.59 ± 0.285 0 -
average - 0.91 0.86 0.74

Table 3: Subclass level classification results. (using MEX motifs of length 6 and longer)
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5.4.2 SVM functional classification - sub-subclass level

Table 4 summarizes the classification results at the sub-subclass level. Since the SVM-Prot

published results contained only classifications at the subclass level, the comparison at the

sub-subclass level is between our MEX motifs based method and the Smith-Waterman based

method. Note that ** denotes the sub-subclasses for which our MEX based classification

results were significantly higher than those obtained by the Smith-Waterman based classi-

fication. Analogously, * denotes the sub-subclasses for which the Smith-Waterman based

classification results were significantly higher than those obtained by our MEX based clas-

sification. Significance was tested using the Wilcoxon signed rand test at a 0.01 level of

confidence.

EC sub-subclass # of sequences MEX Smith-Waterman
1.1.1 2309 0.94 ± 0.011 0.94 ± 0.01
1.2.1 825 0.93 ± 0.022 0.95 ± 0.017
1.6.5 713 0.89 ± 0.021 0.88 ± 0.026

** 1.9.3 575 0.96 ± 0.013 0.93 ± 0.001
1.11.1 379 0.90 ± 0.027 0.93 ± 0.014
1.15.1 310 0.96 ± 0.025 0.98 ± 0.01

* 1.17.4 271 0.90 ± 0.03 0.98 ± 0.016
1.3.3 267 0.91 ± 0.027 0.91 ± 0.04

1.14.14 248 0.91 ± 0.032 0.89 ± 0.02
1.8.1 239 0.90 ± 0.037 0.89 ± 0.044

** 1.3.1 233 0.80 ± 0.043 0.64 ± 0.05
* 1.8.4 224 0.94 ± 0.037 1

** 1.6.99 208 0.69 ± 0.076 0.24 ± 0.067
** 1.5.1 168 0.83 ± 0.055 0.56 ± 0.01

** 1.14.13 163 0.81 ± 0.057 0.44 ± 0.09
* 1.17.1 151 0.96 ± 0.04 0.98 ± 0.014

** 1.13.11 128 0.86 ± 0.05 0.62 ± 0.06
* 1.18.6 125 0.92 ± 0.046 0.95 ± 0.03
** 1.4.3 104 0.82 ± 0.084 0.40
1.4.1 99 0.93 ± 0.053 0.92 ± 0.07

** 1.7.1 94 0.93 ± 0.048 0.87 ± 0.048
** 1.3.99 93 0.76 ± 0.073 0.14 ± 0.034
** 1.14.99 90 0.86 ± 0.071 0.31 ± 0.060

* 1.2.4 86 0.86 ± 0.084 0.90 ± 0.078
** 1.1.99 75 0.92 ± 0.07 0.52 ± 0.065
** 1.10.2 69 0.80 ± 0.086 0.62 ± 0.01
** 1.14.11 64 0.85 ± 0.102 0.31 ± 0.09
** 1.14.12 63 0.89 ± 0.082 0.84 ± 0.07
** 1.2.7 56 0.77 ± 0.112 0.26 ± 0.131
* 1.16.3 55 0.95 ± 0.073 1
* 1.4.4 50 0.98 ± 0.04 1

** 1.18.1 46 0.80 ± 0.123 0.21 ± 0.067
** 1.4.99 46 0.93 ± 0.068 0.73 ± 0.061
** 1.1.3 44 0.66 ± 0.16 0
** 1.10.3 42 0.87 ± 0.11 0.72 ± 0.09
* 1.2.99 39 0.54 ± 0.16 0.61 ± 0.109
** 1.7.99 38 0.75 ± 0.15 0
1.10.99 37 0.88 ± 0.082 0.86 ± 0.07
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EC sub-subclass # of sequences MEX Smith-Waterman
** 1.7.2 35 0.93 ± 0.39 ± 0.15
** 1.97.1 34 0.78 ± 0.15 0.68 ± 0.114
** 1.14.15 32 0.85 ± 0.116 0
** 1.14.17 32 0.96 ± 0.087 0.64 ± 0.086
** 1.12.99 30 0.90 ± 0.09 0.54 ± 0.29
1.14.19 29 0.88 ± 0.105 0.92 ± 0.07
** 1.5.99 29 0.79 ± 0.17 0
* 1.14.16 27 0.93 ± 0.01 1
** 1.8.98 27 0.90 ± 0.14 0
** 1.14.18 26 0.83 ± 0.185 0.31 ± 0.246
** 1.6.1 26 0.84 ± 0.15 0.20 ± 0.164
* 1.3.7 25 0.72 ± 0.23 0.96 ± 0.07
** 1.7.3 24 0.91 ± 0.117 1
** 1.3.5 23 0.87 ± 0.127 0.20 ± 0.163
** 1.6.2 23 0.90 ± 0.116 0.16 ± 0.137
** 1.16.1 21 0.74 ± 0.253 0
average - 0.90 0.82

Table 4: Sub-subclass level classification results.

5.4.3 Summary

At the subclass level, for 4 subclasses (1.1, 1.2, 1.9, 1.15) there was no significant differ-

ence between the Jaccard scores obtained by our method and the results obtained by the

Smith-Waterman based method. For 2 subclasses (1.17, 1.11) the Jaccarad scores obtained

by the Smith-Waterman based method were significantly higher than those obtained by our

method. For the rest 14 subclasses, the Jaccard scores obtained by our method were sig-

nificantly better than those obtained by the Smith-Waterman based method. Furthermore,

for all subclass classification tasks, the results obtained by our method surpassed those ob-

tained by the SVM-Prot method. At the sub-subclass level, for 11 sub-subclasses there was

no significant difference between our method and the Smith-Waterman based method. For

10 sub-subclasses the results obtained by the Smith-Waterman method were significantly

higher than those obtained by our method. For the rest 33 sub-subclasses, the results ob-

tained by our method were significantly higher than those obtained by the Smith-Waterman

based method.
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5.5 Unique MEX motifs

To gain a more thorough understanding of the information carried in the extracted motifs, we

analyzed which of the motifs appear at a single EC subclass or sub-subclass. These motifs

are termed unique motifs. The statistics is presented in Figure 5.3.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500

3750

4000

4250

length of motif

n
u

m
b

er
 o

f 
m

o
ti

fs

entire set of motifs

set of unique motifs

Figure 5.3: Distribution of unique MEX motifs.

5.6 SVM functional classification based on unique MEX motifs

The 14,028 unique MEX motifs cover 90% of the oxidoreductases dataset (8565 sequences).

We used this subset of MEX motifs to train the SVM classifier. Since the uniqueness of

MEX motifs was obtained in a supervised manner, we used only the unique motifs that were

found on the training set sequences to represent the train set and test set enzyme sequences.

Figure 5.4 shows the results for the subclass level. Sub-subclass level results are presented

in table 5.
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5.6.1 SVM functional classification - subclass level

Figure 5.4 presents the subclass level classification results obtained by using the set of unique

MEX motifs. Note that there is no correlation between the size of the subclass (i.e., number of

sequences in the subclass) and the accuracy of the classification. Correlation was tested using

the Spearman correlation at a 0.05 level of confidence. The average Jaccard score obtained at

the subclass level is: 0.93 ± 0.018.
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Figure 5.4: Subclass level classification performance based on unique MEX motifs.
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5.6.2 SVM functional classification - sub-subclass level

EC sub-subclass # of sequences MEX
1.1.1 2309 0.94± 0.010
1.2.1 825 0.94± 0.019
1.6.5 713 0.89± 0.023
1.9.3 575 0.96± 0.0173
1.11.1 379 0.92± 0.026
1.15.1 310 0.95± 0.027
1.17.4 271 0.91± 0.027
1.3.3 267 0.92± 0.026

1.14.14 248 0.91± 0.031
1.8.1 239 0.92± 0.039
1.3.1 233 0.83± 0.044
1.8.4 224 0.95± 0.037
1.6.99 208 0.73± 0.081
1.5.1 168 0.89± 0.049

1.14.13 163 0.85± 0.062
1.17.1 151 0.96± 0.033
1.13.11 128 0.89± 0.074
1.18.6 125 0.92± 0.041
1.4.3 104 0.86± 0.075
1.4.1 99 0.95± 0.045
1.7.1 94 0.97± 0.034
1.3.99 93 0.83± 0.077
1.14.99 90 0.91± 0.053
1.2.4 86 0.87± 0.075
1.1.99 75 0.93± 0.068
1.10.2 69 0.86± 0.079
1.14.11 64 0.88± 0.1
1.14.12 63 0.88± 0.078
1.2.7 56 0.88± 0.098
1.16.3 55 0.92± 0.065
1.4.4 50 0.98± 0.039
1.18.1 46 0.86± 0.116
1.4.99 46 0.96± 0.047
1.1.3 44 0.66± 0.151
1.10.3 42 0.92± 0.078
1.2.99 39 0.65± 0.160
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EC sub-subclass # of sequences MEX
1.7.99 38 0.87± 0.129
1.10.99 37 0.90± 0.070
1.7.2 35 0.93± 0.102
1.97.1 34 0.89± 0.116
1.14.15 32 0.89± 0.103
1.14.17 32 0.96± 0.087
1.12.99 30 0.86± 0.114
1.14.19 29 0.92± 0.102
1.5.99 29 0.86± 0.160
1.14.16 27 0.93± 0.099
1.8.98 27 0.92± 0.141
1.14.18 26 0.84± 0.158
1.6.1 26 0.90± 0.126
1.3.7 25 0.90± 0.018
1.7.3 24 0.90± 0.119
1.3.5 23 0.88± 0.129
1.6.2 23 0.90± 0.116
1.16.1 21 0.80± 0.208
average - 0.91 ± 0.037

Table 5: Sub-subclass level classifications performance based on unique MEX motifs.

5.6.3 Summary

Evidently, motifs of length 6 are both abundant and, concomitantly, comprise a large fraction

of motifs unique of a single subclass or sub-subclass. This finding provides a good explanation

for the classification results obtained by using the subset of motifs of length 6 and longer.

As expected, enzyme classification based on unique MEX motifs yields better classification

results than those obtained by using the subset of MEX motifs of length 6 and longer. Note

that for the smaller subclasses and sub-subclasses the standard deviations are larger than

the standard deviations for the larger subclasses and sub-subclasses. These larger deviations

are the result of dataset partitioning into a train set and a test set. Since only the motifs

found on the sequences of the training set are used, the SVM classifier generalization ability

is highly correlated with the motifs found on the training set sequences.

Using the subset of unique motifs for classification, it has been shown that the average

Jaccard score at the subclass level is 0.93 ± 0.018 as opposed to 0.91 when using the subset

of motifs of length 6 and longer. The weighted average Jaccard score at the sub-subclass level

is 0.91 ± 0.037 as opposed to 0.90 ± 0.082 when using the subset of motifs of length 6 and

longer. The classification tasks were performed using the set of enzyme sequences that the

unique MEX motifs appeared on. In addition, the classification tasks were performed using

the entire set of Oxidoreductases enzyme sequences. The results are presented in 11.
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5.7 Assessing MEX motifs biological relevance

To further analyze biological information carried by MEX motifs, we examined the abundance

of the motifs within PROSITE patterns. As described in section 3.2, we have used the ps scan

tool to extract from the PROSITE database the set of protein sequence signatures that appear

on the enzyme sequences MEX was applied to. This yielded 42,789 distinct protein sequence

signatures.

We tested the number of MEX motifs that are fully contained in the set of extracted

PROSITE patterns. As a background model we randomly selected 16,382 k-mers (i.e., equiv-

alent to the number of MEX motifs of length 6 and longer) out of the set of k-mers that have

at lease 4 occurrences in the oxidoreductases dataset. The k-mers were selected according

to the underlying distribution of the set of MEX motifs. We generated a 100 random samples

of k-mers to gather sufficient statistics and for each random sample we tested the number

k-mers that are fully contained in the set of PROSITE patterns that appear on our dataset

sequences. To test whether the difference between the number of PROSITE matches obtained

by MEX motifs and by the background model k-mers is statistically significant, we computed

the significance of the z-score

(i.e., MEX−MEANrandom

STDrandom
), using the MATLAB normal cumulative distribution function at a 0.01

level of confidence. The results are summarized in table 6.

# of MEX motifs matches Mean and std of background model matches significance
8630 4484 ± 46 p < 10−300

Table 6: MEX motifs matches with PROSITE patterns versus matches of background model.

5.7.1 Summary

As demonstrated in table 6, the number of MEX motifs matches is significantly higher than the

number of matches obtained by the background model. The fact that the randomly chosen k-

mers are chosen according to the underlying distribution of MEX motifs and yet do not match

PROSITE patterns as much as MEX motifs do, attests that MEX motifs do carry relevant

biological information.
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6 Discussion

Applying the MEX algorithm to the set of 9437 oxidoreductases enzymes, we demonstrated

that the extracted motifs form an excellent basis for classifying these enzymes into small

classes known to have different functional roles. In particular, the classification from se-

quence to function based on the motifs of this class of enzymes was shown to outperform any

of the alternative methods.

Our results are compared with those of two other approaches: (i) Classification based on

pairwise sequence similarity, analogous to the one employed by [19], using the same SVM

procedure that was employed for MEX. As demonstrated, MEX derived motifs form a better

basis for classification at the subclass and sub-subclass level of the EC number hierarchy,

indicating that MEX selected motifs improve the signal to noise ratio inherent in the original

sequences. The drawback of the SVM-pairwise method is its efficiency. The vectorization step

for the whole dataset requires pre-computing of all pairwise sequence comparison p-values

in the training set, where each such computation requires O(n2), n = length of the protein

sequences. MEX’s vectorization procedure (section 2.2.1) yields a sparse representation as

opposed to the Smith-Waterman representation. This compressed representation reduces the

run time of the SVM classifier. Using state of the art machines, obtaining the matched clas-

sification results for the Smith-Waterman based method required two orders of magnitudes

more time than was required for obtaining the classification results for our method. (ii) The

SVM-Prot method introduced by [5, 6] on subclass level data (using their published results).

Despite the fact their method is based on semantic information, i.e. physical and chemi-

cal properties of the sequence of amino-acids, the results obtained by MEX are better, again

indicating that MEX selected motifs carry relevant information.

Moreover, using the subset of unique motifs for classification, we showed that the average

Jaccard score at both subclass and sub-subclass levels are even higher than the classification

results obtained by using the subset of MEX motifs of length 6 and longer.

It should be noted that the classification based on MEX motifs is accomplished by us-

ing only 16,382 motifs of length 6 or longer. Considering the 74 classification tasks for ap-

proximately 10,000 enzymes, the number of features allowing a successful classification is

surprisingly small.

MEX motifs are all precise, consecutive amino-acid sequences, as opposed to the regular

expression motifs used by other methods. Such regular-expression motifs approach was pre-

sented by [3]. They have used regular-expression motifs of average length of 21 amino-acids

(termed eMOTIFs) derived in a supervised manner. Applying a feature-selection procedure to

select approximately 1000 eMOTIFs out of their original very large set of eMOTIFs, they have

achieved impressive classification results.

Despite the fact that the number of MEX motifs of length 6 and longer used by our ap-

proach is an order of magnitude larger than the number of selected eMOTIFs, it should be

noted that the sequences space spanned by our precise, consecutive MEX motifs is much

smaller than the one spanned by the eMOTIFs, yet, achieving successful sequence to function

classification. Unfortunately, a direct comparison with this work could not be done due to
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insufficient data.

Furthermore, we demonstrated that the number of MEX motifs matches with PROSITE

patterns was significantly higher than the number of matches obtained by the background

model, again indicating that the selected MEX motifs carry relevant biological information.

The drawback of our method is its reduced coverage (i.e., number of enzyme sequences

represented by MEX motifs). Since not all enzyme sequences contain motifs of length 6 and

longer or unique motifs, there are enzyme sequences that are left out, while this is not the

case for the two other methods.

In general, MEX was found to be a useful tool for deriving sequence motifs that support a

sequence to function classification of enzymes. The ”bag of motifs” representation compressed

the information carried by the enzyme sequences, enabling better classification performance

and reducing the time required to train the SVM classifier.

6.1 Future challenges

As demonstrated, MEX motifs carry relevant biological information concerning the function-

ality of enzymes. Therefore, the major future challenge is deciphering the biological meaning

of the motifs.

The original use of MEX is as a text segmenting component of the unsupervised grammar

induction algorithm, ADIOS [27, 28, 29]. MEX is intended to extract the basic grammatic

building blocks, hence words. As opposed to words, where the substitution of a single letter

will, most probably, change its meaning, this is not necessarily the case for biological pat-

terns. Peptides (i.e., short amino acid sequences) may bare the same functional role despite

the substitution of some amino acids. Furthermore, since the algorithm traverses the graph

(see section 4.1) from all possible starting points, there is redundancy in the obtained mo-

tifs. Hence, despite the high classification performance achieved by using MEX motifs, the

algorithm is not perfect for the purpose of deriving motifs from biological sequential data. The

algorithm should be extended to enable the incorporation of statistical information concerning

amino acids substitutions, such as substitution matrices. This will reduce redundancy and

might enlarge data coverage, hence render the algorithm more suitable for biological data.
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7 Appendix A

To test whether the differences between the classification performances of the various meth-

ods are statistically significant, we used the non-parametric Wilcoxon signed rank test. As

our software we extended the Matlab signrank.m code to include a one-tailed test.

7.1 The Wilcoxon signed rank test

The Wilcoxon signed rank test is a non-parametric method for testing whether two popula-

tions have the same continuous distribution. It is used when the data does not meet the

strict requirements associated with the corresponding parametric paired t-test (i.e., a ”dis-

tribution free” test). The assumption in this test is that there is information both in the

magnitudes of the differences between paired observations, as well as in the ”direction” of

the differences between the matched observations. We have used in our analysis a one-tailed

Wilcoxon’s signed rank test to examine both the significance and ”direction” of the differences

between the Jaccard scores obtained by MEX and the corresponding Jaccard scores obtained

by Smith-Waterman. In our experiments we have independent pairs of sample data from the

populations (i.e., {(mex1, sw1), (mex2, sw2), ..., (mexn, swn)}).

The test is performed by ranking the absolute value of the differences between paired

observations in an ascending order. Let T+ denote the sum of all ranks associated with

positive differences. Correspondingly, let T− denotes the sum of all ranks associated with

negative differences. The test statistic is either T+ or T−.

The critical regions are: T+ ≤ Tcritical or T− ≥ n(n+1)
2 − Tcritical.

The P-value associated with the test statistic (either T+ or T−) is extracted from a Wilcoxon

T-table according to the sample size, level of significance and whether the test is one or two

tailed.

For the classification tasks in which the average Jaccard score obtained by MEX was higher

than the average Jaccard score obtained by Smith-Waterman the hypotheses are:

H0 : MEXscore = SWscore

H1 : MEXscore > SWscore

Thus,

T+ =
∑

i

|mexi − swi|, (mexi − swi) > 0

T− =
∑

i

|mexi − swi|, (mexi − swi) < 0
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For the classification tasks in which the average Jaccard score obtained by Smith-Waterman

was higher than the average Jaccard score obtained by MEX the hypotheses are:

H0 : MEXscore = SWscore

H1 : SWscore > MEXscore

Thus,

T+ =
∑

i

|swi −mexi| , (swi −mexi) > 0

T− =
∑

i

|swi −mexi| , (swi −mexi) < 0
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8 Appedix B - MEX

8.1 Pseudocode of MEX

Algorithm 1 Pseudocode for the MEX algorithm. Only the rightward scan is shown (leftward
scanning is symmetric).
PROCEDURE MEX(G)
G is a MULTI GRAPH

1: for all node nc ∈ G do
2: for all node nd ∈ G do
3: Enc = the set of all edges leaving nc (i.e., the degree of nc);
4: End|nc

= the set of all edges leading from nc to nd (i.e., the degree of nd given nc);
5: P = |Enc

|/|End|nc
| = PR(nd|nc);

6: ScanRight(Enc
, P );

7: end for
8: end for
9: for all path p ∈ G do

10: retrieve any pattern of p;
11: end for

Algorithm 2 Pseudocode for the ScanRight algorithm. It is assumed that each edge e is stored
in such a way that e.nextEdge and e.toNode (the edge’s successor on the path and the node to
which it points) are easily retrieved. The ScanRight procedure calls SignificanceCriterion (on
line 8), which returns true ⇐⇒ it detects a significant pattern.
PROCEDURE ScanRight(E,P )

processedNodes = {};
2: for all e ∈ E do

e2 = e.nextEdge;
4: if e2.toNode /∈ processedNodes then

add e2.toNode to processedNodes;
6: E2 = {e.nextEdge | e ∈ E&e.toNode = e2.toNode}

P2 = |E2|/|E| {probability for e2.toNode given search history}
8: if SignificanceCriterion(P, P2, |E|, |E2|) then

mark significant drop on all relevant paths;
10: end if

if |E2| > 1 then
12: ScanRight(E2, P2);

end if
14: end if

end for

* Pseudocode of quickMEX algorithm by Ben Sandbank
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9 Appendix C

This appendix lists the details of the oxidoreductases subclasses and sub-subclasses.

9.1 List of Oxidoreductases subclasses

Table 7 lists the oxidoreductases subclasses in the dataset.

EC subclass # of sequences
1.1 2444
1.2 1013
1.6 970
1.14 777
1.3 641
1.9 575
1.8 513
1.17 423
1.11 379
1.15 310
1.4 299
1.5 218
1.7 196
1.18 171
1.10 148
1.13 147
1.16 76
1.12 67
1.97 34
1.21 20

* 1.20 16

Table 7: List of oxidoreductases subclasses. * denotes subclasses in which there are less than
20 enzyme sequences.
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9.2 List of Oxidoreductases sub-subclasses

Table 8 lists the oxidoreductases sub-subclasses in the dataset.

EC sub-subclass # of sequences EC sub-subclass # of sequences
1.1.1 2309 1.14.17 32
1.2.1 825 1.12.99 30
1.6.5 713 1.14.19 29
1.9.3 575 1.5.99 29
1.11.1 379 1.14.16 27
1.15.1 310 1.8.98 27
1.17.4 271 1.14.18 26
1.3.3 267 1.6.1 26

1.14.14 248 1.3.7 25
1.8.1 239 1.7.3 24
1.3.1 233 1.3.5 23
1.8.4 224 1.6.2 23
1.6.99 208 1.16.1 21
1.5.1 168 ** 1.12.98 17

1.14.13 163 ** 1.13.12 15
1.17.1 151 ** 1.5.3 15
1.13.11 128 ** 1.21.3 13
1.18.6 125 ** 1.20.4 11
1.4.3 104 ** 1.8.3 11
1.4.1 99 ** 1.12.2 9
1.7.1 94 ** 1.1.2 8
1.3.99 93 ** 1.21.4 7
1.14.99 90 ** 1.2.3 6
1.2.4 86 ** 1.8.7 6
1.1.99 75 ** 1.8.99 6
1.10.2 69 ** 1.12.7 5
1.14.11 64 ** 1.7.7 5
1.14.12 63 ** 1.1.4 4
1.2.7 56 ** 1.1.5 4
1.16.3 55 ** 1.12.1 4
1.4.4 50 ** 1.13.99 4
1.18.1 46 ** 1.20.98 4
1.4.99 46 ** 1.5.5 4
1.1.3 44 ** 1.12.5 2
1.10.3 42 ** 1.14.20 2
1.2.99 39 ** 1.5.8 2
1.7.99 38 ** 1.14.21 1
1.10.99 37 ** 1.17.99 1
1.7.2 35 ** 1.2.2 1
1.97.1 34 ** 1.20.1 1
1.14.15 32

Table 8: List of oxidoreductases sub-subclasses. ** denotes sub-subclasses in which there
are less than 20 enzyme sequences.
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10 Appendix D

This appendix lists the details of the subclass level and sub-subclass level classification re-

sults obtained using various length dependent subsets of MEX motifs. subclasses and sub-

subclasses.

10.1 Subclass level classification results based on length dependent sub-
sets of MEX motifs

Table 9 lists the classification results we obtained on various length dependent subsets of

MEX motifs.

subclass length ≥ 4 length ≥ 5 length = 6 length ≥ 6 length ≥ 7 length ≥ 8 length ≥ 9
1.1 0.88 ±0.02 0.92±0.01 0.92±0.04 0.94±0.01 0.94±0.01 0.93±0.01 0.94±0.01
1.2 0.86±0.01 0.88±0.02 0.89±0.02 0.89±0.02 0.91±0.01 0.93±0.01 0.93±0.02
1.6 0.85±0.02 0.87±0.01 0.92±0.02 0.92±0.02 0.94±0.02 0.95±0.01 0.96±0.01
1.14 0.82±0.02 0.84±0.03 0.89±0.04 0.90±0.02 0.91±0.01 0.94±0.02 0.94±0.02
1.3 0.76±0.03 0.81±0.03 0.85±0.04 0.85±0.04 0.90±0.02 0.91±0.03 0.93±0.03
1.9 0.88±0.02 0.93±0.01 0.95±0.02 0.95±0.02 0.94±0.02 0.95±0.02 0.96±0.02
1.8 0.87±0.02 0.93±0.02 0.93±0.02 0.93±0.02 0.90±0.03 0.91±0.03 0.94±0.02
1.17 0.87±0.04 0.90±0.03 0.92±0.04 0.92±0.04 0.91±0.03 0.92±0.02 0.93±0.02
1.11 0.87±0.02 0.89±0.03 0.90±0.03 0.92±0.03 0.93±0.02 0.93±0.03 0.93±0.02
1.15 0.92±0.03 0.96±0.02 0.95±0.02 0.96±0.02 0.96±0.02 0.95±0.02 0.94±0.02
1.4 0.82±0.05 0.85±0.04 0.90±0.03 0.90±0.03 0.93±0.03 0.94±0.03 0.93±0.04
1.5 0.58±0.06 0.75±0.04 0.84±0.05 0.84±0.05 0.87±0.04 0.85±0.06 0.85±0.04
1.7 0.74±0.04 0.81±0.03 0.88±0.04 0.88±0.04 0.92±0.03 0.90±0.03 0.88±0.03
1.18 0.73±0.05 0.82±0.06 0.86±0.06 0.86±0.06 0.89±0.06 0.94±0.04 0.93±0.04
1.10 0.75±0.05 0.85±0.07 0.85±0.07 0.88±0.04 0.89±0.04 0.92±0.04 0.94±0.04
1.13 0.59±0.7 0.73±0.04 0.81±0.03 0.82±0.05 0.90±0.05 0.91±0.05 0.92±0.05
1.16 0.70±0.01 0.79±0.01 0.90±0.07 0.92±0.07 0.93±0.04 0.92±0.06 0.86±0.07
1.12 0.55±0.12 0.70±0.12 0.74±0.16 0.73±0.13 0.80±0.08 0.88±0.06 0.90±0.1
1.97 0.69±0.11 0.78±0.01 0.80±0.1 0.80±0.1 0.94±0.07 0.95±0.07 0.98±0.04
1.21 0.62±0.2 0.64±0.15 0.62±0.25 0.62±0.25 0.82±0.22 0.93±0.1 0.93±0.1

average 0.84±0.02 0.89±0.02 0.90±0.03 0.92±0.02 0.92±0.02 0.93±0.02 0.93±0.02

Table 9: Subclass level classification results based on length dependent subsets of MEX
motifs.
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10.2 Sub-subclass level classification results based on length dependent
subsets of MEX motifs

Table 10 lists the sub-subclass level classification results obtained using various length de-

pendent subsets of MEX motifs.

subclass length ≥ 4 length ≥ 5 length = 6 length ≥ 6 length ≥ 7 length ≥ 8 length ≥ 9
1.1.1 0.87±0.01 0.92±0.01 0.83±0.01 0.93±0.01 0.93±0.01 0.94±0 0.95±0.01
1.2.1 0.9±0.02 0.9±0.08 0.83±0.03 0.92±0.02 0.92±0.02 0.93±0.02 0.92±0.02
1.6.5 0.88±0.02 0.83±0.03 0.79±0.02 0.89±0.01 0.9±0.01 0.82±0.27 0.83±0.28
1.9.3 0.89±0.02 0.9±0.06 0.88±0.03 0.95±0.01 0.93±0.01 0.75±0.37 0.76±0.38
1.11.1 0.86±0.02 0.87±0.08 0.83±0.03 0.92±0.01 0.92±0.01 0.93±0.02 0.93±0.02
1.15.1 0.9±0.03 0.91±0.1 0.9±0.03 0.95±0.01 0.94±0.02 0.94±0.01 0.94±0.01
1.17.4 0.84±0.03 0.86±0.09 0.8±0.03 0.9±0.02 0.9±0.04 0.92±0.02 0.93±0.03
1.3.3 0.86±0.03 0.86±0.13 0.82±0.03 0.91±0.03 0.91±0.03 0.91±0.02 0.92±0.04

1.14.14 0.87±0.04 0.86±0.06 0.85±0.03 0.9±0.02 0.9±0.03 0.9±0.02 0.9±0.05
1.8.1 0.86±0.03 0.86±0.11 0.85±0.05 0.9±0.03 0.88±0.02 0.78±0.26 0.84±0.28
1.3.1 0.73±0.06 0.72±0.09 0.72±0.05 0.79±0.04 0.86±0.08 0.9±0.03 0.9±0.05
1.8.4 0.9±0.03 0.92±0.07 0.91±0.04 0.94±0.03 0.9±0.03 0.73±0.37 0.76±0.38
1.6.99 0.51±0.05 0.63±0.08 0.6±0.1 0.71±0.07 0.73±0.04 0.66±0.23 0.66±0.23
1.5.1 0.61±0.07 0.73±0.09 0.77±0.09 0.83±0.05 0.82±0.06 0.81±0.08 0.85±0.08

1.14.13 0.66±0.04 0.71±0.05 0.7±0.08 0.8±0.05 0.86±0.06 0.89±0.04 0.89±0.04
1.17.1 0.89±0.04 0.91±0.09 0.89±0.05 0.96±0.04 0.94±0.02 0.94±0.03 0.92±0.03
1.13.11 0.59±0.08 0.72±0.07 0.78±0.04 0.85±0.05 0.93±0.06 0.93±0.03 0.95±0.05
1.18.6 0.82±0.06 0.83±0.12 0.83±0.05 0.9±0.04 0.91±0.07 0.94±0.03 0.93±0.05
1.4.3 0.69±0.06 0.65±0.11 0.65±0.11 0.8±0.09 0.83±0.08 0.88±0.07 0.88±0.06
1.4.1 0.84±0.06 0.85±0.12 0.81±0.06 0.9±0.05 0.87±0.09 0.89±0.1 0.87±0.08
1.7.1 0.87±0.06 0.89±0.14 0.88±0.06 0.94±0.06 0.93±0.05 0.82±0.28 0.8±0.27
1.3.99 0.64±0.08 0.71±0.17 0.67±0.09 0.78±0.05 0.78±0.09 0.73±0.08 0.79±0.14
1.14.99 0.72±0.07 0.79±0.11 0.73±0.12 0.85±0.08 0.9±0.05 0.94±0.03 0.94±0.03
1.2.4 0.8±0.09 0.84±0.12 0.83±0.08 0.86±0.05 0.88±0.06 0.93±0.03 0.91±0.07
1.1.99 0.71±0.09 0.82±0.11 0.62±0.11 0.9±0.08 0.92±0.09 0.92±0.09 0.88±0.11
1.10.2 0.55±0.1 0.7±0.11 0.69±0.15 0.78±0.07 0.88±0.08 0.91±0.07 1±0
1.14.11 0.72±0.12 0.76±0.21 0.77±0.11 0.83±0.09 0.85±0.09 1±0 0.98±0.04
1.14.12 0.7±0.13 0.69±0.24 0.84±0.09 0.88±0.06 0.92±0.07 0.87±0.07 0.94±0.06
1.2.7 0.56±0.12 0.65±0.12 0.76±0.17 0.79±0.1 0.84±0.17 0.95±0.09 0.95±0.09
1.16.3 0.8±0.09 0.89±0.07 0.88±0.07 0.93±0.08 0.93±0.05 0.91±0.08 1±0
1.4.4 0.98±0.03 0.98±0.03 0.98±0.03 0.98±0.03 0.98±0.03 0.98±0.03 0.95±0.07
1.18.1 0.63±0.09 0.68±0.2 0.82±0.12 0.82±0.11 0.86±0.1 0.87±0.09 0.98±0.03
1.4.99 0.82±0.09 0.82±0.1 0.83±0.14 0.93±0.06 0.93±0.07 0.93±0.05 0.98±0.04
1.1.3 0.56±0.11 0.67±0.14 0.22±0.2 0.66±0.16 0.77±0.2 0.85±0.11 0.92±0.12
1.10.3 0.78±0.09 0.9±0.1 0.73±0.09 0.86±0.12 0.86±0.12 0.88±0.12 0.88±0.06
1.2.99 0.35±0.15 0.45±0.19 0.43±0.19 0.55±0.11 0.71±0.14 0.88±0.21 1±0
1.7.99 0.47±0.19 0.61±0.21 0.59±0.21 0.76±0.17 0.8±0.18 0.73±0.27 0.69±0.26
1.10.99 0.86±0.09 0.9±0.07 0.62±0.15 0.86±0.09 0.9±0.08 0.89±0.11 0.88±0.15
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1.7.2 0.73±0.15 0.91±0.11 0.8±0.23 0.89±0.12 0.91±0.12 0.78±0.29 0.78±0.28
1.97.1 0.67±0.2 0.72±0.24 0.57±0.28 0.83±0.15 0.93±0.1 0.74±0.38 0.78±0.39
1.14.15 0.72±0.12 0.83±0.11 0.85±0.1 0.83±0.11 0.88±0.12 0.86±0.07 0.92±0.1
1.14.17 0.94±0.06 0.92±0.11 0.91±0.09 0.98±0.03 0.97±0.05 0.97±0.07 1±0
1.12.99 0.76±0.14 0.75±0.15 0.79±0.12 0.82±0.14 0.85±0.12 0.84±0.12 0.93±0.12
1.14.19 0.78±0.13 0.83±0.13 0.79±0.13 0.84±0.11 0.89±0.11 0.89±0.11 0.83±0.29
1.5.99 0.53±0.22 0.8±0.28 0±0 0.8±0.15 0.83±0.29 0.92±0.09 0.82±0.29
1.14.16 0.66±0.24 0.8±0.21 0.89±0.14 0.92±0.08 0.9±0.14 0.89±0.15 0.89±0.15
1.8.98 0.69±0.23 0.88±0.21 0.28±0.25 0.93±0.11 0.94±0.1 0.74±0.38 0.7±0.45
1.14.18 0.54±0.14 0.66±0.24 0.6±0.15 0.81±0.18 0.72±0.21 0.72±0.21 0.58±0.34
1.6.1 0.78±0.16 0.79±0.16 0.52±0.24 0.89±0.1 0.98±0.06 1±0 1±0
1.3.7 0.29±0.14 0.51±0.29 0.16±0.21 0.67±0.23 0.9±0.3 1±0 0.9±0.3
1.7.3 0.67±0.13 0.59±0.17 0.35±0.45 0.88±0.12 0.94±0.09 0.8±0.29 0.85±0.29
1.3.5 0.9±0.1 0.86±0.11 0.86±0.21 0.9±0.1 0.88±0.13 0.86±0.12 0.77±0.17
1.6.2 0.8±0.08 0.9±0.18 0.87±0.13 0.92±0.13 0.84±0.12 0.89±0.18 0.76±0.3
1.16.1 0.54±0.12 0.54±0.16 0.7±0.22 0.71±0.23 0.85±0.19 0.88±0.16 0.68±0.2
average 0.82±0.04 0.85±0.07 0.80±0.05 0.90±0.04 0.91±0.04 0.89±0.1 0.90±0.1

Table 10: Sub-subclass level classification results based on length dependent subsets of MEX
motifs.
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11 Appendix E

Figure 5.4 presents the subclass level classification results using the set of enzyme sequences

that the unique motifs appeared on (8565 sequences). Figure 11.1 presents the subclass level

classification results using the entire set of enzyme sequences (9437 sequences).
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Figure 11.1: Subclass level classification performance based on unique motifs (using the
entire set of Oxidoreductases enzyme sequences).
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Table 5 presents the sub-subclass level classification results using the set of enzyme

sequences that the unique motifs appeared on (8565 sequences). Table 11 presents the

sub-subclass level classification results using the entire set of enzyme sequences (9437 se-

quences).

EC sub-subclass Jaccard score
1.1.1 0.88± 0.012
1.2.1 0.92± 0.018
1.6.5 0.84± 0.029
1.9.3 0.90± 0.023
1.11.1 0.89± 0.028
1.15.1 0.92± 0.031
1.17.4 0.91± 0.027
1.3.3 0.88± 0.041

1.14.14 0.91± 0.034
1.8.1 0.90± 0.045
1.3.1 0.72± 0.048
1.8.4 0.92± 0.032
1.6.99 0.59± 0.07
1.5.1 0.66± 0.0639

1.14.13 0.67± 0.072
1.17.1 0.90± 0.045
1.13.11 0.69± 0.076
1.18.6 0.89± 0.049
1.4.3 0.69± 0.095
1.4.1 0.91± 0.051
1.7.1 0.92± 0.044
1.3.99 0.72± 0.082
1.14.99 0.83± 0.094
1.2.4 0.84± 0.089
1.1.99 0.87± 0.086
1.10.2 0.59± 0.094
1.14.11 0.75± 0.094
1.14.12 0.70± 0.114
1.2.7 0.57± 0.125
1.16.3 0.87± 0.088
1.4.4 0.98± 0.050
1.18.1 0.80± 0.107
1.4.99 0.92± 0.071
1.1.3 0.50± 0.13
1.10.3 0.85± 0.116
1.2.99 0.36± 0.136
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EC sub-subclass Jaccard score
1.7.99 0.87± 0.129
1.10.99 0.90± 0.088
1.7.2 0.93± 0.1
1.97.1 0.76± 0.128
1.14.15 0.84± 0.12
1.14.17 0.93± 0.070
1.12.99 0.88± 0.128
1.14.19 0.88± 0.113
1.5.99 0.68± 0.184
1.14.16 0.89± 0.116
1.8.98 0.94± 0.149
1.14.18 0.76± 0.19
1.6.1 0.70± 0.161
1.3.7 0.54± 0.185
1.7.3 0.70± 0.16
1.3.5 0.89± 0.141
1.6.2 0.89± 0.117
1.16.1 0.66± 0.155

Table 11: Sub-subclass level classifications performance based on unique MEX motifs (using
the entire set of Oxidoreductases enzyme sequences).

45



12 Glossary

• A substitution matrix estimates the rate at which each possible residue in a amino acid

or DNA sequence changes to each other residue over time

• A gap scoring system is used to chose scores for ’gaps’

• A gap is one or more adjacent nulls in one sequence aligned with letters in the other

sequence. Ideally, the gap scoring system charges a large initial penalty for the existence

of a gap, and smaller penalties for each individual residue. This takes into account that

each mutational event can insert or delete multiple residues at a time - the bulk of the

gap cost penalty is for the existence of the mutation itself, not the length.

• Similarity Scores: Identical or similar residues have positive scores while dissimilar

residues can have 0 or even negative scores

• homology two or more elements are said to be homologous if they are alike due to

shared ancestry. This could be evolutionary ancestry, meaning that the elements evolved

from some element in a common ancestor or developmental ancestry, meaning that the

elements arose from the same tissue in embryonal development.
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