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Abstract

We compare our model of unsupervised learning of linguistic structures,
ADIOS [1], to some recent work in computational linguistics and in
grammar theory. Our approach resembles the Construction Grammar in
its general philosophy (e.g., in its reliance on structural generalizations
rather than on syntax projected by the lexicon, as in the current gen-
erative theories), and the Tree Adjoining Grammar in its computational
characteristics (e.g., in its apparent affinity with Mildly Context Sensitive
Languages). The representations learned by our algorithm are truly emer-
gent from the (unannotated) corpus data, whereas those found in pub-
lished works on cognitive and construction grammars and on TAGs are
hand-tailored. Thus, our results complement and extend both the com-
putational and the more linguistically oriented research into language ac-
quisition. We conclude by suggesting how empirical and formal study of
language can be best integrated.

1 Unsupervised learning through redundancy reduction

Reduction of redundancy is a general (and arguably the only conceivable) approach to un-
supervised learning [2, 3]. Written natural language (or transcribed speech) is trivially
redundant to the extent it relies on a fixed lexicon. This property of language makes pos-
sible the unsupervised recovery of words from a text corpus with all the spaces omitted,
through a straightforward minimization of per-letter entropy [4].

Pushing entropy minimization to the limit would lead to an absurd situation in which the
agglomeration of words into successively longer “primitive” sequences renders the result-
ing representation useless for dealing with novel texts (that is, incapable of generalization;
cf. [5], p.188). We observe, however, that a word-based representation is still redundant to
the extent that different sentences share the same word sequences. Such sequences need
not be contiguous; indeed, the detection of paradigmatic variation within a slot in a set of
otherwise identical aligned sequences (syntagms) is the basis for the classical distributional
theory of language [6], as well as for some modern NLP methods [7]. Thepattern— the
syntagm and theequivalence classof complementary-distribution symbols that may appear
in its open slot — is the main representational building block of our system,ADIOS (for



Automatic DIstillation Of Structure) [1].1

Our goal here is to help bridge statistical and formal approaches to language [9] by placing
our work on the unsupervised learning of structure in the context of current research in
grammar acquisition in computational linguistics, and at the same time to link it to certain
formal theories of grammar. Section 2 outlines the main computational principles behind
the ADIOS model (for algorithmic details and empirical results, see [1, 10]). Sections 3
and 4 compare our model to select approaches from computational and formal linguistics,
respectively. We conclude with a focus on the challenges ahead, discussed in section 5.

2 The principles behind theADIOS algorithm

The representational power ofADIOS and its capacity for unsupervised learning rest on
three principles: (1) probabilistic inference of pattern significance, (2) context-sensitive
generalization, and (3) recursive construction of complex patterns. Each of these is de-
scribed briefly below.
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Figure 1: (a) The directed multi-graph for a simple corpus consisting of four partially
“bundled” sentences, which form the patternis that a {dog, cat, horse} ?. (b). The
abstracted pattern and the equivalence class associated with it are highlighted (edges that
belong to sequences not subsumed by this pattern, e.g., #104, are untouched).(c) The
identification of new significant patterns is done using the acquired equivalence classes
(e.g., #200). For details, see [1].

Probabilistic inference of pattern significance. ADIOS represents a corpus of sentences
as an initially highly redundant directed graph, which can be informally visualized as a
tangle of strands that are partially segregated intobundles. Each of these consists of some
strands clumped together (Figure 1); a bundle is formed when two or more strands join
together and run in parallel and is dissolved when more strands leave the bundle than stay

1The symbols may be letters or morphemes; in addition to text corpora and transcribed speech
(CHILDES [8]), ADIOS has been tested on gene sequence data and on music.
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Figure 2: The bundle core is defined dynamically, with respect to graph traversals. The
main idea is to predicate the membership of two elementsei and ej in the same bun-
dle on increments in the probability of getting fromei to ej while following the paths in
the forward and the backward directions: an element newly added to the candidate bun-
dle is kept if its addition causes the corresponding probabilitiesPR andPL to increase
(e.g.,P (A) < P (B|A) < P (C|AB) < P (D|ABC) > P (E|ABCD), so the bun-
dle ends atD). The relevant probabilites are readily available in the graph: for example,
P (C|AB) = 3/4 because there are four paths that travel throughA andB, only three of
which continue toC.

in. In a given corpus, there will be many bundles, with each strand (sentence) possibly
participating in several. The computational challenge we face is how to identify significant
bundles so as to balance high compression (small size of the bundle “lexicon”) against
good generalization (the ability to generate new grammatical sentences by splicing together
various strand fragments each of which belongs to a different bundle). The intuition behind
our algorithmic approach to this problem is sketched in Figure 2.

Context sensitivity of patterns. A pattern is an abstraction of a bundle of sentences that
are identical up to variation in one place, where one of several symbols — the members
of the equivalence class associated with the pattern — may appear (Figure 3). Because
this variation is only allowed in the context specified by the pattern, the generalization af-
forded by a set of patterns is inherently safer than in approaches that posit globally valid
categories (“parts of speech”) and rules (“grammar”). The reliance ofADIOS on many
context-sensitive patterns rather than on traditional rules can be compared both to the Con-
struction Grammar (discussed later) and to the following observation made by Langacker
([11], p.46): “Out of this sea of particularity speakers extract whatever generalizations they
can. Most of these are of limited scope, and some forms cannot be assimilated to any gen-
eral patterns at all. Fully general rules are not the expected case in this perspective, but
rather a special, limiting case along a continuum that also embraces totally idiosyncratic
forms and patterns of all intermediate degrees of generality.”
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Figure 3: Two typical patterns extracted from a subset of the CHILDES collection [8].
Hundreds of such patterns and equivalence classes (underscored) together constitute a con-
cise representation of the raw data. Some of the phrases that can be described/generated
by these patterns are:let’s change her...; I thought you gonna change her...; I was
going to go to the...; none of these appear in the training data, illustrating the ability of
ADIOS to generalize. The generation process, which operates as a depth-first search of the
tree corresponding to a pattern, is illustrated on the left. For details see [1].

Hierarchical structure of patterns. The ADIOS representation meets the challenge of
capturing long-range dependencies through two related mechanisms: hierarchical nesting
of patterns and pattern recursion through self-reference. The graph that serves as the ba-
sic data structure forADIOS is rewired every time a new significant pattern is detected, so
that a bundle of strings subsumed by the pattern is represented by a single new arc cor-
responding to it; this rewiring is context-specific, just as the patterns themselves are [1].
Following the rewiring, potentially far-apart symbols that used to straddle the newly ab-
stracted bundle become close neighbors. Patterns thus become hierarchically structured in
that their constituent symbols may be either terminals (i.e., fully specified strings) or other
patterns. Moreover, patterns are not precluded from referring to themselves, which in prin-
ciple opens the door for true recursion (in practice, the depth of recursion is limited by the
data that caused the successive rewiring, if not by implementational constraints).

3 Related computational approaches

In natural language processing (NLP), a distinction is usually made between unsupervised
learning methods that attempt to find good structural primitives and those that merely seek
good parameter settings for predefined primitives.ADIOS clearly belongs to the first cat-
egory. Moreover, our algorithm is capable of learning from raw data, whereas most other
systems start with corpora annotated by part of speech tags [12], or even rely on treebanks
(collections of hand-parsed sentences [13]). Of the many such methods, we can mention
here only a few.

Global grammar optimization using tagged data. Stolcke and Omohundro [14] learn
structure (the topology of a Hidden Markov Model, or the productions of a Stochastic Con-
text Free Grammar), by iteratively maximizing the probability of the current approximation
to the target grammar, given the data. In contrast to this approach, which is global in that



all the data contribute to the figure of merit at each iteration,ADIOS is local in the sense
that its inferences only apply to the current bundle candidate. Another important difference
is that instead of general-scope rules stated in terms of parts of speech, we seek context-
specific patterns. Perhaps because of its globality and unrestricted-scope rules, Stolcke and
Omohundro’s method has “difficulties with large-scale natural language applications” [14].
Similar conclusions are reached by Clark, who observes that POS tags are not enough to
learn syntax from (“a lot of syntax depends on the idiosyncratic properties of particular
words.” [15], p.36). Clark’s own algorithm [16] had attempted to learn a phrase-structure
grammar from tagged text, by starting with local distributional cues, then filtering spurious
non-terminals using a mutual information criterion (namely, requiring high MI between
pattern prefix and suffix). In the final stage, his algorithm clustered the results to achieve a
minimum description length (MDL) representation, by starting with maximum likelihood
grammar, then greedily selecting the candidate for abstraction that would maximally reduce
the description length. In its greedy approach to optimization (but not in its local search for
good patterns or its ability to deal with untagged data), our approach resembles Clark’s.

Probabilistic treebank-based learning. Bod, whose algorithm learns by gathering in-
formation about corpus probabilities of potentially complex trees, observes that “[. . . ] the
knowledge of a speaker-hearer cannot be understood as a grammar, but as a statistical
ensemble of language experiences that changes slightly every time a new utterance is per-
ceived or produced. The regularities we observe in language may be viewed as emergent
phenomena, but they cannot be summarized into a consistent non-redundant system that
unequivocally defines the structures of new utterances.” ([13], p.145). Consequently, his
memory- or analogy-based language model is not a typical example of unsupervised learn-
ing through redundancy reduction; we mention it here mainly because of the parallels be-
tween the data representation it employs (Stochastic Tree-Substitution Grammar [17]) and
some of the formalisms discussed later, in section 4.

Split and merge pattern learning. The unsupervised structure learning algorithm devel-
oped by Wolff stands out in that it does not need the corpus to be tagged. In a 1988 book
chapter describing his system [5], Wolff offers an excellent survey of earlier attempts at un-
supervised learning of language, and of much relevant behavioral data. His representations
consist of SYN (syntagmatic), PAR (paradigmatic) and M (terminal) elements. Although
our patterns and equivalence classes can be seen as analogous to the first two of these,
Wolff’s learning criterion is much simpler than that ofADIOS: in each iteration, the most
frequent pair of contiguous SYN elements are joined together. His system, however, has a
unique provision for countering the usual propensity of unsupervised algorithms for over-
generalization: PAR elements that do not admit free substitution among all their members
in some context are rebuilt in a context-specific manner. Unfortunately, for implementa-
tional reasons Wolff’s system has not been tested on unconstrained natural language.

4 Related linguistic approaches

Our work is data- rather than theory-driven in that we refrain from makinga priori as-
sumptions about the kind of “grammar” that we expect our algorithm to produce (cf. the
quote from Langacker [11] in section 2). Clearly, however, the recursively structured, pa-
rameterized patterns learned byADIOS, and their use in processing and generating novel
sentences, do resemble certain features of some extensively studied syntactic formalisms.
The similarities and differences betweenADIOS and several such formalisms are discussed
briefly in the remainder of this section. We distinguish between approaches that are mo-
tivated mainly by linguistic and psychological considerations (Cognitive and Construction
grammars), and those motivated computationally (Local and Tree Adjoining grammars).



Cognitive Grammar. The main methodological tenets ofADIOS — populating the lexi-
con with “units” of varying complexity and degree of entrenchment, and using cognition-
general mechanisms for learning and representation — are very much in the spirit of
the foundations of Cognitive Grammar laid down by Langacker [11]. At the same time,
whereas the cognitive grammarians typically attempt to hand-craft structures that would
reflect the logic of language as they perceive it,ADIOS discovers the primitives of grammar
empirically rather than accept them by fiat.

Construction Grammar. Similarities also exist betweenADIOS and the various Con-
struction Grammars [18, 19] (albeit the latter are all hand-crafted). A construction gram-
mar consists of elements that differ in their complexity and in the degree to which they are
specified: an idiom such as “big deal” is a fully specified, immutable construction, whereas
the expression “the X, the Y” (as in “the more, the better”; cf. [20]) is a partially specified
template. The patterns learned byADIOS likewise vary along the dimensions of complex-
ity and specificity (not every pattern has an equivalence class, for example). Moreover, we
suspect that these patterns capture much of the semantics of the sentences from which they
are abstracted, just as constructions are designed to serve as vehicles for expressing the
conceptual/semantic content of intended messages in a form compatible with the structural
constraints that apply to language. A proper evaluation of this claim must wait for the emer-
gence of a semantic theory capable of dealing with all the complexities of natural language
— something that current formal theories [21] cannot do. In the meanwhile, we concur
with Jackendoff’s position: “[. . . ] we must explicitly deny that conceptual structures [. . . ]
meananything. Rather, we want to say that theyare meaning: they do exactly the things
meaning is supposed to do, such as support inference and judgment.” ([22], p.306).

Tree Adjoining Grammar. In capturing the regularities inherent in multiple criss-
crossing paths through a corpus,ADIOS closely resembles the finite-state Local Grammar
approach of Gross [23].2 Note, however, that our pattern-based representations have coun-
terparts for each of the two composition operations, substitution and adjoining, that charac-
terize a Tree Adjoining Grammar, or TAG, developed by Joshi and others [25]. Specifically,
both substitution and adjoining are subsumed in the relationships that hold amongADIOS
patterns, such as the membership of one pattern in another (cf. section 2). Consider a
patternPi and its equivalence classE(Pi); any other patternPj ∈ E(Pi) can be seen as
substitutable inPi. Likewise, if Pj ∈ E(Pi), Pk ∈ E(Pi) andPk ∈ E(Pj), then the
patternPj can be seen as adjoinable toPi. Because of this correspondence between the
TAG operations and theADIOS patterns, we believe that the latter represent regularities that
are best described by Mildly Context-Sensitive Language formalism [25]. Moreover, be-
cause theADIOS patterns are learned from data, they already incorporate the constraints on
substitution and adjoining that in the original TAG framework must be specified manually.

5 Prospects and challenges

We have compared our approach to unsupervised learning of sequence structure (which is
known to yield promising results when applied to raw corpora of language such as tran-
scribed children-oriented speech [1]) to some recent work in computational linguistics
and in grammar theory. TheADIOS approach to the representation of linguistic knowl-
edge resembles the Construction Grammar in its general philosophy (e.g., in its reliance
on structural generalizations rather than on syntax projected by the lexicon), and the Tree
Adjoining Grammar in its computational capacity (e.g., in its apparent ability to accept
Mildly Context Sensitive Languages). The representations learned by theADIOS algorithm

2There are also interesting parallels here to the Variable Order Markov (VOM) models of symbolic
sequence data [24].



are truly emergent from the (unannotated) corpus data, whereas those found in published
works on cognitive and construction grammars and on TAGs are hand-tailored. Thus, our
results complement and extend both the computational and the more linguistically oriented
research into cognitive/construction grammar.

To further the cause of an integrated understanding of language, a crucial challenge must
be met: a viable approach to the evaluation of performance of an unsupervised language
learner must be developed, allowing testing both (1) neutral with respect to the linguistic
dogma, and (2) cognizant of the plethora of phenomena documented by linguists over the
course of the past half century.

Unsupervised grammar induction algorithms that work from raw data are in principle dif-
ficult to test, because any “gold standard” to which the acquired representation can be
compared (such as the Penn Treebank [26]) invariably reflects its designers’ preconcep-
tions about language, which may not be valid, and which usually are controversial among
linguists themselves [16]. As Wolff observes, a child “. . . must generalize from the sample
to the language without overgeneralizing into the area of utterances which are not in the
language.What makes the problem tricky us that both kinds of generalization, by definition,
have zero frequency in the child’s experience.” ([5], p.183, italics in the original). Instead
of shifting the onus of explanation onto some unspecified evolutionary processes (which is
what the innate grammar hypothesis amounts to), we suggest that a system such asADIOS
should be tested by monitoring its acceptance of massive amounts of human-generated
data, and at the same time by getting human subjects to evaluate sentences generated by
the system (note that this makes psycholinguistics a crucial component in the entire under-
taking).

Such a purely empirical approach to the evaluation problem would waste the many valuable
insights into the regularities of language accrued by the linguists over decades. Although
some empiricists would consider this a fair price for quarantining what they perceive as a
runaway theory that got out of touch with psychological and computational reality, we be-
lieve that searching for a middle way is a better idea, and that the middle way can be found,
if the linguists can be persuaded to try and present their main findings in a theory-neutral
manner. From recent reviews of syntax that do attempt to reach out to non-linguists (e.g.,
[27]), it appears that the core issues on which every designer of a language acquisition
system should be focusing are dependencies (such as co-reference) and constraints on de-
pendencies (such as island constraints), especially as seen in a typological (cross-linguistic)
perspective [19].
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